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Numerical Methods in Engineering with MATLAB® is a text for engi-
neering students and a reference for practicing engineers. The choice of
numerical methods was based on their relevance to engineering prob-
lems. Every method is discussed thoroughly and illustrated with prob-
lems involving both hand computation and programming. MATLAB
M-files accompany each method and are available on the book Web
site. This code is made simple and easy to understand by avoiding com-
plex bookkeeping schemes while maintaining the essential features of
the method. MATLAB was chosen as the example language because of
its ubiquitous use in engineering studies and practice. This new edi-
tion includes the new MATLAB anonymous functions, which allow the
programmer to embed functions into the program rather than storing
them as separate files. Other changes include the addition of rational
function interpolation in Chapter 3, the addition of Ridder’s method in
place of Brent’s method in Chapter 4, and the addition of the downhill
simplex method in place of the Fletcher—Reeves method of optimization
in Chapter 10.
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Preface to the First Edition

This book is targeted primarily toward engineers and engineering students of ad-
vanced standing (sophomores, seniors, and graduate students). Familiarity with a
computer language is required; knowledge of engineering mechanics (statics, dy-
namics, and mechanics of materials) is useful, but not essential.

The text places emphasis on numerical methods, not programming. Most engi-
neers are not programmers, but problem solvers. They want to know what methods
can be applied to a given problem, what their strengths and pitfalls are, and how to
implement them. Engineers are not expected to write computer code for basic tasks
from scratch; they are more likely to utilize functions and subroutines that have been
already written and tested. Thus programming by engineers is largely confined to
assembling existing bits of code into a coherent package that solves the problem at
hand.

The “bit” of code is usually a function that implements a specific task. For the
user the details of the code are of secondary importance. What matters is the inter-
face (what goes in and what comes out) and an understanding of the method on
which the algorithm is based. Since no numerical algorithm is infallible, the impor-
tance of understanding the underlying method cannot be overemphasized; it is, in
fact, the rationale behind learning numerical methods.

This book attempts to conform to the views outlined above. Each numerical
method is explained in detail and its shortcomings are pointed out. The examples
that follow individual topics fall into two categories: hand computations that illus-
trate the inner workings of the method, and small programs that show how the com-
puter code is utilized in solving a problem. Problems that require programming are
marked with l.

The material consists of the usual topics covered in an engineering course on nu-
merical methods: solution of equations, interpolation and data fitting, numerical dif-
ferentiation and integration, solution of ordinary differential equations, and eigen-
value problems. The choice of methods within each topic is tilted toward relevance
to engineering problems. For example, there is an extensive discussion of symmetric,
sparsely populated coefficient matrices in the solution of simultaneous equations.



www.MatlabKar.com e b (3l 4t - e 35901 - IS e ol

Preface to the First Edition

In the same vein, the solution of eigenvalue problems concentrates on methods that
efficiently extract specific eigenvalues from banded matrices.

An important criterion used in the selection of methods was clarity. Algorithms
requiring overly complex bookkeeping were rejected regardless of their efficiency and
robustness. This decision, which was taken with great reluctance, is in keeping with
the intent to avoid emphasis on programming.

The selection of algorithms was also influenced by current practice. This disqual-
ified several well-known historical methods that have been overtaken by more recent
developments. For example, the secant method for finding roots of equations was
omitted as having no advantages over Ridder’s method. For the same reason, the mul-
tistep methods used to solve differential equations (e.g., Milne and Adams methods)
were left out in favor of the adaptive Runge-Kutta and Bulirsch-Stoer methods.

Notably absent is a chapter on partial differential equations. It was felt that
this topic is best treated by finite element or boundary element methods, which
are outside the scope of this book. The finite difference model, which is commonly
introduced in numerical methods texts, is just too impractical in handling curved
boundaries.

As usual, the book contains more material than can be covered in a three-credit
course. The topics that can be skipped without loss of continuity are tagged with an
asterisk (*).

The programs listed in this book were tested with MATLAB® R2008b under
Windows® XP
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Preface to the Second Edition

The second edition was largely precipitated by the introduction of anonymous func-
tions into MATLAB. This feature, which allows us to embed functions in a program,
rather than storing them in separate files, helps to alleviate the scourge of MATLAB
programmers — proliferation of small files. In this edition, we have recoded all the
example programs that could benefit from anonymous functions.

We also took the opportunity to make a few changes in the material covered:

e Rational function interpolation was added to Chapter 3.

e Brent’s method of root finding in Chapter 4 was replaced by Ridder’s method.
The full-blown algorithm of Brent is a complicated procedure involving elaborate
bookkeeping (a simplified version was presented in the first edition). Ridder’s
method is as robust and almost as efficient as Brent’s method, but much easier
to understand.

e The Fletcher—Reeves method of optimization was dropped in favor of the down-
hill simplex method in Chapter 10. Fletcher-Reeves is a first-order method that
requires the knowledge of gradients of the merit function. Since there are few
practical problems where the gradients are available, the method is of limited
utility. The downhill simplex algorithm is a very robust (but slow) zero-order
method that often works where faster methods fail.



www.MatlabKar.com e b g5l and - e Gi3gel - I8 il ol



www.MatlabKar.com e b (3l At - e 35901 - IS e ol

Introduction to MATLAB

Quick Overview

This chapter is not intended to be a comprehensive manual of MATLAB®. Our sole
aim is to provide sufficient information to give you a good start. If you are familiar
with another computer language, and we assume that you are, it is not difficult to
pick up the rest as you go.

MATLAB is a high-level computer language for scientific computing and
data visualization built around an interactive programming environment. It is
becoming the premier platform for scientific computing at educational institu-
tions and research establishments. The great advantage of an interactive system is
that programs can be tested and debugged quickly, allowing the user to concen-
trate more on the principles behind the program and less on programming itself.
Since there is no need to compile, link, and execute after each correction,
MATLAB programs can be developed in a much shorter time than equivalent
FORTRAN or C programs. On the negative side, MATLAB does not produce stand-
alone applications - the programs can be run only on computers that have MATLAB
installed.

MATLAB has other advantages over mainstream languages that contribute to
rapid program development:

e MATLAB contains a large number of functions that access proven numerical li-
braries, such as LINPACK and EISPACK. This means that many common tasks
(e.g., solution of simultaneous equations) can be accomplished with a single
function call.

e There is extensive graphics support that allows the results of computations to be
plotted with a few statements.

¢ All numerical objects are treated as double-precision arrays. Thus there is no
need to declare data types and carry out type conversions.

e MATLAB programs are clean and easy to read; they lack the syntactic clutter of
some mainstream languages (e.g., C).
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The syntax of MATLAB resembles that of FORTRAN. To get an idea of the simi-
larities, let us compare the codes written in the two languages for solution of simul-
taneous equations Ax = b by Gauss elimination (do not worry about understanding
the inner workings of the programs). Here is the subroutine in FORTRAN 90:

subroutine gauss(A,b,n)
use prec_mod
implicit none
real(DP), dimension(:,:), intent(din out) :: A
real (DP), dimension(:), intent(in out) :: b
integer, intent(in)
real(DP) :: lambda

integer :: i,k

do i = k+1,n
if(A(i,k) /= 0) then
lambda = A(i,k)/A(k,k)
A(i,k+1:n) = A(4i,k+1:n) - lambda*A(k,k+1:n)
b(i) = b(i) - lambda*b(k)
end if
end do
end do

do k = n,1,-1

b(k) = (b(k) - sum(A(k,k+1:n)*b(k+1:n)))/ACk,k)
end do
return

end subroutine gauss

The statement use prec_mod tells the compiler to load the module prec_mod
(not shown here), which defines the word length DP for floating-point numbers. Also
note the use of array sections, such as a(k, k+1:n), a very useful feature that was not
available in previous versions of FORTRAN.

The equivalent MATLAB function is (MATLAB does not have subroutines):

function b = gauss(A,b)
n = length(b);

for k = 1:n-1
for i = k+1:n
if A(i,k) "= 0
lambda = A(i,k)/A(k,k);
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1.1 Quick Overview

A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1l:n);
b(i)= b(i) - lambda*b(k);
end
end
end

for k = n:-1:1
b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);

end

Simultaneous equations can also be solved in MATLAB with the simple com-
mand A\b (see below).

MATLAB can be operated in the interactive mode through its command window,
where each command is executed immediately upon its entry. In this mode MATLAB
acts like an electronic calculator. Here is an example of an interactive session for the
solution of simultaneous equations:

> A =[210; -1 22; 014]; % Input 3 x 3 matrix.
>> b = [1; 2; 3]; % Input column vector
>> soln = A\b % Solve A*x = b by ’left division’
soln =
0.2500
0.5000
0.6250

The symbol >> is MATLAB’s prompt for input. The percent sign (%) marks the
beginning of a comment. A semicolon (;) has two functions: it suppresses printout
of intermediate results and separates the rows of a matrix. Without a terminating
semicolon, the result of a command would be displayed. For example, omission of
the last semicolon in the line defining the matrix A would result in

> A =1[210; -1 2 2; 01 4]

A =
2 1 0

-1 2 2

0 1 4

Functions and programs can be created with the MATLAB editor/debugger and
saved with the .m extension (MATLAB calls them M-files). The file name of a saved
function should be identical to the name of the function. For example, if the function
for Gauss elimination listed above is saved as gauss .m, it can be called just like any
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Introduction to MATLAB

MATLAB function:
> A =[210; -122; 01 4];
> b = [1; 2; 3];
>> soln = gauss(A,b)
soln =
0.2500
0.5000
0.6250

Data Types and Variables
Data Types

The most commonly used MATLAB data types, or classes, are double, char, and log-
ical, all of which are considered by MATLAB as arrays. Numerical objects belong to
the class double, which represent double-precision arrays; a scalar is treated as a
1 x 1 array. The elements of a char type array are strings (sequences of characters),
whereas a logical type array element may contain only 1 (true) or 0 (false).

Another important class is function_handle, which is unique to MATLAB. It
contains information required to find and execute a function. The name of a function
handle consists of the character @, followed by the name of the function; for example,
@sin. Function handles are used as input arguments in function calls. For example,
suppose that we have a MATLAB function plot(func,x1,x2) that plots any user-
specified function func from x1 to x2. The function call to plot sin x from 0 to =
would be plot(@sin, 0,pi).

There are other data types, such as sparse (sparse matrices), inline (inline ob-
jects), and struct (structured arrays), but we seldom come across them in this text.
Additional classes can be defined by the user. The class of an object can be displayed
with the class command. For example,

> x =1 + 31 % Complex number
>> class(x)

ans =

double

Variables

Variable names, which must start with a letter, are case sensitive. Hence xstart and
XStart represent two different variables. The length of the name is unlimited, but
only the first N characters are significant. To find N for your installation of MATLAB,
use the command namelengthmax:

>> namelengthmax
ans =
63
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1.2 Data Types and Variables

Variables that are defined within a MATLAB function are local in their scope.

They are not available to other parts of the program and do not remain in memory
after exiting the function (this applies to most programming languages). However,
variables can be shared between a function and the calling program if they are de-
clared global. For example, by placing the statement global X Y in a function as

well as the calling program, the variables X and Y are shared between the two program
units. The recommended practice is to use capital letters for global variables.

tant of which are

MATLAB contains several built-in constants and special variables, most impor-

Default name for results

ans

eps Smallest number for which1 + eps > 1
inf Infinity

NaN Not a number

ior j x/:T

pi T

realmin | Smallest usable positive number
realmax | Largest usable positive number

Here are a few examples:

>> warning off

>> 5/0
ans =
Inf

>> 0/0
ans =
NaN

>> 5*NaN
ans =
NaN

>> NaN == NaN
ans =
0

>> eps
ans =
2.2204e-016

% Suppresses print of warning messages

% Most operations with NaN result in NaN

% Different NaN’s are not equall!
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Arrays

Arrays can be created in several ways. One of them is to type the elements of the array
between brackets. The elements in each row must be separated by blanks or commas.
Here is an example of generating a 3 x 3 matrix:

> A=[2-1 0

-1 2 -1
0 -1 1]
A =
2 -1 0
-1 2 -1
0 -1 1

The elements can also be typed on a single line, separating the rows with colons:

> A =[2 -10; -1 2 -1; 0 -1 1]

A =
2 -1 0
-1 2 -1
0 -1 1

Unlike most computer languages, MATLAB differentiates between row and col-
umn vectors (this peculiarity is a frequent source of programming and input errors).
For example,

> b = [1 2 3] % Row vector
b =
1 2 3
> b = [1; 2; 3] % Column vector
b =
> b = [1 2 3]° % Transpose of row vector

e b (55kw annd - e 3590l - I e ol
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1.2 Data Types and Variables

The single quote () is the transpose operator in MATLAB; thus, b’ is the trans-
pose of b.
The elements of a matrix, such as

A A A
A=|An Axp A
Az Az Asz

can be accessed with the statement A(i, j), where i and j are the row and column
numbers, respectively. A section of an array can be extracted by the use of colon no-
tation. Here is an illustration:

> A =[816; 357; 49 2]

A =
1 6
4 9 2
>> A(2,3) % Element in row 2, column 3
ans =
7
>> A(:,2) % Second column
ans =
1
9

>> A(2:3,2:3) % The 2 x 2 submatrix in lower right corner

ans =

Array elements can also be accessed with a single index. Thus A(3i) extracts the
ith element of A, counting the elements down the columns. For example, A(7) and
A(1, 3) would extract the same element from a 3 x 3 matrix.

Cells

A cell array is a sequence of arbitrary objects. Cell arrays can be created by enclosing
its contents between braces {}. For example, a cell array c¢ consisting of three cells
can be created by

> ¢ = {[1 2 3], ’'one two three’, 6 + 7i}
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[1x3 double] ’one two three’ [6.0000+ 7.00001i]

As seen above, the contents of some cells are not printed in order to save space.
If all contents are to be displayed, use the cel1disp command:

>> celldisp(c)

c{1} =
1 2 3
c{2} =
one two three
c{3} =

6.0000 + 7.00001

Braces are also used to extract the contents of the cells:

>> c{1} % First cell
ans =
1 2 3
>> c{1}(2) % Second element of first cell
ans =
2
>> c{2} % Second cell
ans =

one two three

Strings

A string is a sequence of characters; it is treated by MATLAB as a character array.
Strings are created by enclosing the characters between single quotes. They are con-
catenated with the function strcat, whereas colon operator (:) is used to extract a
portion of the string. For example,

>> sl = ’Press return to exit’; % Create a string

>> s2 = ’ the program’; % Create another string

>> s3 = strcat(sl,s2) % Concatenate sl and s2

s3 =

Press return to exit the program

>> s4 = s1(1:12) % Extract chars. 1-12 of sl
s4 =

Press return
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1.3 Operators

Operators
Arithmetic Operators

MATLAB supports the usual arithmetic operators

+ | Addition
— | Subtraction

% | Multiplication

Exponentiation

When applied to matrices, they perform the familiar matrix operations, as illus-
trated below.

> A =1[123; 456]; B=1[71829; 012];

> A + B % Matrix addition
ans =
8 10 12
6 8
>> A*B’ % Matrix multiplication
ans =
50 8
122 17
>> A*B % Matrix multiplication fails

%

??? Error using ==> % due to incompatible dimensions

Inner matrix dimensions must agree.

There are two division operators in MATLAB:

/ | Right division

Left division

If a and b are scalars, the right division a/b results in a divided by b, whereas the left
division is equivalent to b/a. In the case where A and B are matrices, A/B returns the
solution of X*A = B and A\B yields the solution of A*X = B.

Often we need to apply the *, /, and ~ operations to matrices in an element-
by-element fashion. This can be done by preceding the operator with a period (.) as
follows:

.* | Element-wise multiplication
./ | Element-wise division

Element-wise exponentiation

For example, the computation C;; = A;; B;j can be accomplished with

e b (55ke annd - e 3590l - I e ol
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> A =[123; 456]; B=1[789; 012];
> C = A.*B
C =

16 27

5 12

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These opera-

tors are
< | Lessthan
> | Greater than
<= | Less than or equal to

>= | Greater than or equal to

Equal to

1

= | Notequal to

The comparison operators always act element-wise on matrices; hence, they result
in a matrix of logical type. For example,

> A =[123; 456]; B=1[7829; 01 2];
> A > B
ans =

0 0 0

Logical Operators

The logical operators in MATLAB are

& | AND
| | OR
- [ NOT

They are used to build compound relational expressions, an example of which is
shown below.

> A =1[123; 456]; B=1[789; 01 2];
> (A >B) | (B> 5)
ans =

1 1 1
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1.4 Flow Control

Flow Control
Conditionals

if, else, elseif
The if construct

if condition
block

end

executes the block of statements if the condition is true. If the condition is false,
the block skipped. The if conditional can be followed by any number of elseif
constructs:

if condition
block

elseif condition
block

end

which work in the same manner. The else clause

else
block

end

can be used to define the block of statements which are to be executed if none of the
if-elseif clauses are true. The function signum, which determines the sign of a
variable, illustrates the use of the conditionals:

function sgn = signum(a)

if a >0

sgn = 1;
elseif a < 0

sgn = -1;
else

sgn = 0;
end

>> signum (-1.5)
ans =
-1
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switch
The switch construct is

switch expression
case valuel
block
case value2
block

otherwise
block

end

Here the expression is evaluated and the control is passed to the case that matches
the value. For instance, if the value of expression is equal to value2, the block of state-
ments following case value2 is executed. If the value of expression does not match
any of the case values, the control passes to the optional otherwise block. Here is
an example:

function y = trig(func,x)
switch func

case s1in

y = sin(x);

case ’cos
y = cos(x);

case ’'tan’
y = tan(x);

otherwise
error(’No such function defined’)

end

>> trig(’tan’,pi/3)
ans =
1.7321

Loops
while

The while construct

while condition:
block

end
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executes a block of statements if the condition is true. After execution of the block,
condition is evaluated again. If it is still true, the block is executed again. This process
is continued until the condition becomes false.

The following example computes the number of years it takes for a $1000 princi-
pal to grow to $10,000 at 6% annual interest.

>> p = 1000; years = O0;
>> while p < 10000
years = years + 1;
p = p*(1 + 0.06);
end
>> years
years =
40

for
The for loop requires a target and a sequence over which the target loops. The form
of the construct is

for target = sequence
block

end

For example, to compute cos x from x =0 to 7 /2 at increments of 7 /10, we
could use

>> for n = 0:5 % n loops over the sequence 0 1 2 3 4 5

y(n+1)
end

cos(n*pi/10);

>> y
y=
1.0000 0.9511 0.8090 0.5878 0.3090 0.0000

Loops should be avoided whenever possible in favor of vectorized expressions,
which execute much faster. A vectorized solution to the last computation would be

> n = 0:5;
cos(n*pi/10)

\
\%
<

Il

1.0000 0.9511 0.8090 0.5878 0.3090 0.0000
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break

Any loop can be terminated by the break statement. Upon encountering a break
statement, the control is passed to the first statement outside the loop. In the follow-
ing example, the function buildvec constructs a row vector of arbitrary length by
prompting for its elements. The process is terminated when the input is an empty
element.

function x = buildvec
for i = 1:1000

elem = input(’==> ’); % Prompts for input of element

if isempty(elem) % Check for empty element
break

end

x(i) = elem;
end

>> x = buildvec

==>

3
5
=> 7
==> 2

==>

continue
When the continue statement is encountered in a loop, the control is passed to
the next iteration without executing the statements in the current iteration. As an
illustration, consider the following function, which strips all the blanks from the
string s1:

function s2 = strip(sl)
s2 =7, % Create an empty string
for i = 1:1length(sl)
if s1(i) = '’
continue
else
s2 = strcat(s2,s1l(i)); % Concatenation
end

end

>> s2 = strip(’This is too bad’)
s2 =
Thisistoobad
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return

A function normally returns to the calling program when it runs out of statements.
However, the function can be forced to exit with the return command. In the exam-
ple below, the function solve uses the Newton-Raphson method to find the zero of
f(x) =sinx — 0.5x. The input x (guess of the solution) is refined in successive iter-
ations using the formula x < x + Ax, where Ax = —f(x)/f"(x), until the change Ax
becomes sufficiently small. The procedure is then terminated with the return state-
ment. The for loop assures that the number of iterations does not exceed 30, which
should be more than enough for convergence.

function x = solve(x)
for numIter = 1:30
dx = -(sin(x) - 0.5*x)/(cos(x) - 0.5); % -f(x)/f’(x)

X = X + dx;

if abs(dx) < 1.0e-6 % Check for convergence
return

end

end

error(’Too many iterations’)

>> x = solve(2)
X =
1.8955

error
Execution of a program can be terminated and a message displayed with the error
function

error(’ message’)

For example, the following program lines determine the dimensions of matrix and
aborts the program if the dimensions are not equal.

[m,n] = size(A); % m = no. of rows; n = no. of cols.

ifm "= n
error(’Matrix must be square’)
end
Functions
Function Definition

The body of a function must be preceded by the function definition line

function [output_args] = function_name(input-arguments)

e b (55ke annd - e 3590l - I e ol
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The input and output arguments must be separated by commas. The number of ar-
guments may be zero. If there is only one output argument, the enclosing brackets
may be omitted.

To make the function accessible to other program units, it must be saved under
the file name function_name . n.

Subfunctions

A function M-file may contain other functions in addition to the primary function.
These so-called subfunctions can be called only by the primary function or other
subfunctions in the file; they are not accessible to other program units. Otherwise,
subfunctions behave as regular functions. In particular, the scope of variables de-
fined within a subfunction is local; that is, these variables are not visible to the calling
function. The primary function must be the first function in the M-file.

Nested Functions
A nested function is a function that is defined within another function. A nested func-
tion can be called only by the function in which it is embedded. Nested functions
differ from subfunctions in the scope of the variables: a nested subfunction has ac-
cess to all the variables in the calling function and vice versa.

Normally, a function does not require a terminating end statement. This is not
true for nested functions, where the end statement is mandatory for all functions
residing in the M-file.

Calling Functions

A function may be called with fewer arguments than appear in the function defini-
tion. The number of input and output arguments used in the function call can be
determined by the functions nargin and nargout, respectively. The following ex-
ample shows a modified version of the function solve that involves two input and
two output arguments. The error tolerance epsilon is an optional input that may
be used to override the default value 1. 0e-6. The output argument numIter, which
contains the number of iterations, may also be omitted from the function call.

function [x,numIter] = solve(x,epsilon)
if nargin == % Specify default value if
epsilon = 1.0e-6; % second input argument is
end % omitted in function call
for numIter = 1:100
dx = -(sin(x) - 0.5*x)/(cos(x) - 0.5);

X = X + dx;

if abs(dx) < epsilon % Converged; return to
return % calling program

end

end

e b (55kw annd - e 3590l - I e ol
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error(’Too many iterations’)

>> x = solve(2) % numlter not printed
X =

1.8955
>> [x,numIter] = solve(2) % numlIter is printed
X =

1.8955
numIter =

4

>> format long
>> X = solve(2,1.0e-12) % Solving with extra precision
X =
1.89549426703398
>>

Evaluating Functions

Let us consider a slightly different version of the function solve shown below. The
expression for dx, namely, Ax = —f(x)/f’(x), is now coded in the function myfunc,
so that solve contains a call to myfunc. This will work fine, provided that myfunc is
stored under the file name myfunc .m so that MATLAB can find it.

function [x,numIter] = solve(x,epsilon)
if nargin == 1; epsilon = 1.0e-6; end
for numIter = 1:30

dx = myfunc(x);

X = X + dx;

if abs(dx) < epsilon; return; end
end

error(’Too many iterations’)

function y = myfunc(x)
y = -(sin(x) - 0.5*x)/(cos(x) - 0.5);

>> x = solve(2)
X =

1.8955

In the above version of solve the function returning dx is stuck with the name
myfunc. If myfunc is replaced with another function name, solve will not work
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unless the corresponding change is made in its code. In general, it is not a good
idea to alter computer code that has been tested and debugged; all data should be
communicated to a function through its arguments. MATLAB makes this possible by
passing the function handle of myfunc to solve as an argument, as illustrated below.

function [x,numIter] = solve(func,x,epsilon)

if nargin == 2; epsilon = 1.0e-6; end

for numIter = 1:30
dx = feval(func,x); % feval is a MATLAB function for
X = X + dx; % evaluating a passed function

if abs(dx) < epsilon; return; end
end

error(’Too many iterations’)

>> x = solve(@myfunc,?2) % @myfunc is the function handle
X:
1.8955

The call solve(@myfunc, 2)creates a function handle to myfunc and passes it
to solve as an argument. Hence the variable func in solve contains the handle
to myfunc. A function passed to another function by its handle is evaluated by the
MATLAB function

feval (function_handle, arguments)

It is now possible to use solve to find a zero of any f(x) by coding the function
Ax = —f(x)/f"(x) and passing its handle to solve.

Anonymous Functions

If a function is not overly complicated, it can be represented as an anonymous func-
tion. The advantage of an anonymous function is that it is embedded in the program
code rather than residing in a separate M-file. An anonymous function is created with
the command

function_handle = @(arguments) expression

which returns the function_handle of the function defined by expression. The input
arguments must be separated by commas. Being a function handle, an anonymous
function can be passed to another function as an input argument. The following
shows how the last example could be handled by creating the anonymous function
myfunc and passing it to solve.

>> myfunc = @(x) -(sin(x) - 0.5*x)/(cos(x) - 0.5);
>> x = solve(myfunc,2) % myfunc is already a function handle; it

% should not be input as @myfunc
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1.8955
We could also accomplish the task with a single line:

>> x = solve(@(x) -(sin(x) - 0.5*x)/(cos(x) - 0.5),2)

1.8955

Inline Functions

Another means of avoiding a function M-file is by creating an inline object from a
string expression of the function. This can be done by the command

function_name = inline(expression, argl’,’ arg2, ...)

Here expression describes the function and argl, arg2, ... are the input arguments. If
there is only one argument, it can be omitted. An inline object can also be passed to
a function as an input argument, as seen in the following example.

>> myfunc = inline(’-(sin(x) - 0.5*x)/(cos(x) - 0.5)’,’x’);
>> x = solve(myfunc,2)
X =

1.8955

Input/Output
Reading Input

The MATLAB function for receiving user input is
value = input(’ prompt’)

It displays a prompt and then waits for input. If the input is an expression, it is evalu-
ated and returned in value. The following two samples illustrate the use of input:

>> a = input(’Enter expression: ’)
Enter expression: tan(0.15)
a =

0.1511

>> s = input(’Enter string: ’)
Enter string: ’Black sheep’

s =

Black sheep
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Printing Output

As mentioned before, the result of a statement is printed if the statement does not end
with a semicolon. This is the easiest way of displaying results in MATLAB. Normally
MATLAB displays numerical results with about five digits, but this can be changed
with the format command:

format long | switches to 16-digit display

format short | switches to 5-digit display

To print formatted output, use the fprintf function:
fprintf(’ format’ , list)

where format contains formatting specifications and list is the list of items to be
printed, separated by commas. Typically used formatting specifications are

%w.df | Floating point notation

%w.de | Exponential notation

\n Newline character

where w is the width of the field and d is the number of digits after the decimal point.
Line break is forced by the newline character. The following example prints a format-
ted table of sin x versus x at intervals of 0.2:

> x = 0:0.2:1;
>> for i = 1l:length(x)
fprintf(’%4.1f %11.6f\n’ ,x(i),sin(x(i)))

end
0.0 0.000000
0.2 0.198669
0.4 0.389418
0.6 0.564642
0.8 0.717356
1.0 0.841471

Array Manipulation
Creating Arrays

We learned before that an array can be created by typing its elements between
brackets:

>> x = [0 0.25 0.5 0.75 1]

0 0.2500 0.5000 0.7500 1.0000
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Colon Operator
Arrays with equally spaced elements can also be constructed with the colon operator.

Xx = first_elem: increment: last_elem

For example,

>> x = 0:0.25:1
X =

0 0.2500 0.5000 0.7500 1.0000

linspace
Another means of creating an array with equally spaced elements is the 1inspace
function. The statement

X = linspace (xfirst, xlast, n)

creates an array of n elements starting with xfirst and ending with xlast. Here is an
illustration:

>> x = linspace(0,1,5)
X =
0 0.2500 0.5000 0.7500 1.0000

logspace
The function logspace is the logarithmic counterpart of 1inspace. The call

x = logspace(zfirst, zlast, n)

creates n logarithmically spaced elements starting with x = 1097 and ending with
x = 1074 Here is an example:

>> x = logspace(0,1,5)
x =

1.0000 1.7783 3.1623 5.6234 10.0000

zZeros
The function call

X = zeros(m,n)

returns a matrix of 72 rows and n columns that is filled with zeros. When the function
is called with a single argument, for example, zeros(n), an n x n matrix is created.
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ones
X = ones(m,n)

The function ones works in the manner as zeros, but fills the matrix with ones.

rand
X = rand(m,n)

This function returns a matrix filled with random numbers between 0 and 1.

eye
The function eye

X = eye(n)

creates an n x n identity matrix.

Array Functions

There are numerous array functions in MATLAB that perform matrix operations and
other useful tasks. Here are a few basic functions:

length
The length n (number of elements) of a vector x can be determined with the function
length:
n = length(x)
size

If the function size is called with a single input argument:
[m,n] = size(X)

it determines the number of rows m and the number of columns 7 in the matrix X. If
called with two input arguments:

m = size(X,dim)

it returns the length of X in the specified dimension (dim = 1 yields the number of
rows, and dim = 2 gives the number of columns).

reshape
The reshape function is used to rearrange the elements of a matrix. The call

Y = reshape(X,m,n)
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returns an m x n matrix the elements of which are taken from matrix X in the
column-wise order. The total number of elements in X must be equal to m x n. Here
is an example:

>> a = 1:2:11
a =
1 3 5 7 9 11
>> A = reshape(a,?2,3)
A =
1 5 9
3 7 11
dot

a = dot(x,))
This function returns the dot product of two vectors x and y which must be of the
same length.
prod
a = prod(x)
For a vector x, prod (x) returns the product of its elements. If x is a matrix, then a is

a row vector containing the products over each column. For example,

> a=[12345 6];
>> A = reshape(a,?2,3)

A =
1 3
4 6
>> prod(a)
ans =
720
>> prod(A)
ans =
2 12 30
sum

a = sum(x)

This function is similar to prod, except that it returns the sum of the elements.
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Cross
¢ = cross(a,b)

The function cross computes the cross product: ¢ = a x b, where vectors a and b
must be of length 3.

Writing and Running Programs

MATLAB has two windows available for typing program lines: the command window
and the editor/debugger. The command window is always in the interactive mode, so
that any statement entered into the window is immediately processed. The interac-
tive mode is a good way to experiment with the language and try out programming
ideas.

MATLAB opens the editor window when a new M-file is created, or an existing
file is opened. The editor window is used to type and save programs (called script
files in MATLAB) and functions. One could also use a text editor to enter program
lines, but the MATLAB editor has MATLAB-specific features, such as color coding and
automatic indentation, that make work easier. Before a program or function can be
executed, it must be saved as a MATLAB M-file (recall that these files have the .m
extension). A program can be run by invoking the run command from the editor’s
debug menu.

When a function is called for the first time during a program run, it is compiled
into P-code (pseudo-code) to speed up execution in subsequent calls to the func-
tion. One can also create the P-code of a function and save it on disk by issuing the
command

pcode function_name

MATLAB will then load the P-code (which has the .p extension) into the memory
rather than the text file.

The variables created during a MATLAB session are saved in the MATLAB
workspace until they are cleared. Listing of the saved variables can be displayed by
the command who. If greater detail about the variables is required, type whos. Vari-
ables can be cleared from the workspace with the command

clearab...

which clears the variables a, b, .. .. If the list of variables is omitted, all variables are
cleared.
Assistance on any MATLAB function is available by typing

help function_.name

in the command window.
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Plotting

Plotting
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MATLAB has extensive plotting capabilities. Here we illustrate some basic commands
for two-dimensional plots. The example below plots sin x and cos x on the same plot.

% Plot example

X =

Yy

0:0.05*pi:2*pi;

sin(x);

plot(x,y, ’k-0")

hold on

zZ =

cos(x);

plot(x,z, 'k-x")

grid on
xlabel(’x’)
gtext(’sin x’)

gtext(’cos x’)

%
%
%
%
%
%
%
%
%
%
%
%

Create x-array

Create y-array

Plot x-y points with specified color
(’k’ = black) and symbol (o0’ = circle)
Allows overwriting of current plot
Create z-array

Plot x-z points (’x’ = cross)

Display coordinate grid

Display label for x-axis

Create mouse-movable text (move cross-

hairs to the desired location and

press ’'Enter’)

A function stored in an M-file can be plotted with a single command, as shown

below.
function y = testfunc(x) % Stored function
y = (x.73).*sin(x) - 1./x;
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>> fplot(@testfunc,[1 20]) % Plot from x = 1 to 20

>> grid on

8000

6000

4000 /

2000
IINEENEVRE

—2000

—4000 \\ /

-6000
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Solve the simultaneous equations Ax = b

Introduction

In this chapter we look at the solution of n linear algebraic equations in 7 unknowns.
It is by far the longest and arguably the most important topic in the book. There is a
good reason for this - it is almost impossible to carry out numerical analysis of any
sort without encountering simultaneous equations. Moreover, equation sets arising
from physical problems are often very large, consuming a lot of computational re-
sources. It is usually possible to reduce the storage requirements and the run time
by exploiting special properties of the coefficient matrix, such as sparseness (most
elements of a sparse matrix are zero). Hence there are many algorithms dedicated
to the solution of large sets of equations, each one being tailored to a particular
form of the coefficient matrix (symmetric, banded, sparse, etc.). A well-known col-
lection of these routines is LAPACK - Linear Algebra PACKage, originally written in
Fortran77.!

We cannot possibly discuss all the special algorithms in the limited space avail-
able. The best we can do is to present the basic methods of solution, supplemented
by a few useful algorithms for banded and sparse coefficient matrices.

Notation

A system of algebraic equations has the form

I LAPACK is the successor of LINPACK, a 1970s and 80s collection of Fortran subroutines.
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Anxy +Apx+ -+ Ainxn = b
A21x1 +A22X2 + - +A2nxn = bg

Ag1xy +AzXxp + -+ AzpXy = b3 2.1

Anlxl +An2x2 + - +Annxn = bn

where the coefficients A;; and the constants b; are known, and x; represent the un-
knowns. In matrix notation the equations are written as

A A - A X b,
Azy Az -+ Apy X b,
=1 . (2.2)
Anl An2 Ann Xn bn
or, simply
Ax=Db (2.3)

A particularly useful representation of the equations for computational purposes
is the augmented coefficient matrix, obtained by adjoining the constant vector b to
the coefficient matrix A in the following fashion:

An A - Aunlb
An Ay - Aop|by

[amp]=|" [ 2.4)
Anl An2 e AnS bn

Uniqueness of Solution

A system of n linear equations in n unknowns has a unique solution, provided that
the determinant of the coefficient matrix is nonsingular, that is, if |A| # 0. The rows
and columns of a nonsingular matrix are linearly independent in the sense that no
row (or column) is a linear combination of other rows (or columns).

If the coefficient matrix is singular, the equations may have an infinite number of
solutions, or no solutions at all, depending on the constant vector. As an illustration,
take the equations

2x+y=3 4x+2y=6

Since the second equation can be obtained by multiplying the first equation by two,
any combination of x and y that satisfies the first equation is also a solution of the
second equation. The number of such combinations is infinite. On the other hand,
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the equations
2x+y=3 4x+2y=0
have no solution because the second equation, being equivalent to 2x + y = 0, con-

tradicts the first one. Therefore, any solution that satisfies one equation cannot sat-
isfy the other one.

Ill Conditioning

The obvious question is: What happens when the coefficient matrix is almost singu-
lar; that is, if |A| is very small? In order to determine whether the determinant of the
coefficient matrix is “small,” we need a reference against which the determinant can
be measured. This reference is called the norm of the matrix, denoted by ||A||. We can
then say that the determinant is small if

IAl << lIA]l

Several norms of a matrix have been defined in existing literature, such as the Eucli-
dan norm

Z ZAl?j (2.5a)

i=1 j=1

IAlle =

and the row-sum norm, also called the infinity norm
n
1Al = 1212)22; |Aij| (2.5b)
]:

A formal measure of conditioning is the matrix condition number, defined as
cond(A) = |A] |A7!| (2.5¢)

If this number is close to unity, the matrix is well conditioned. The condition number
increases with the degree of ill conditioning, reaching infinity for a singular matrix.
Note that the condition number is not unique, but depends on the choice of the ma-
trix norm. Unfortunately, the condition number is expensive to compute for large
matrices. In most cases it is sufficient to gage conditioning by comparing the deter-
minant with the magnitudes of the elements in the matrix.

If the equations are ill conditioned, small changes in the coefficient matrix result
in large changes in the solution. As an illustration, take the equations

2x+y=3 2x+1.00ly=0
that have the solution x = 1501.5, y = —3000. Since

2

IA| =
2 1.001

=2(1.001) — 2(1) = 0.002

is much smaller than the coefficients, the equations are ill conditioned. The effect of
ill conditioning can be verified by changing the second equation to 2x + 1.002y = 0
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and re-solving the equations. The result is x = 751.5, y = —1500. Note that a 0.1%
change in the coefficient of y produced a 100% change in the solution.

Numerical solutions of ill-conditioned equations are not to be trusted. The rea-
son is that the inevitable roundoff errors during the solution process are equivalent
to introducing small changes into the coefficient matrix. This in turn introduces large
errors into the solution, the magnitude of which depends on the severity of ill con-
ditioning. In suspect cases the determinant of the coefficient matrix should be com-
puted so that the degree of ill conditioning can be estimated. This can be done during
or after the solution with only a small computational effort.

Linear Systems

Linear algebraic equations occur in almost all branches of numerical analysis. But
their most visible application in engineering is in the analysis of linear systems (any
system whose response is proportional to the input is deemed to be linear). Linear
systems include structures, elastic solids, heat flow, seepage of fluids, electromag-
netic fields, and electric circuits; that is, most topics are taught in an engineering
curriculum.

If the system is discrete, such as a truss or an electric circuit, then its analysis
leads directly to linear algebraic equations. In the case of a statically determinate
truss, for example, the equations arise when the equilibrium conditions of the joints
are written down. The unknowns x;, Xy, . .., X, represent the forces in the members
and the support reactions, and the constants by, b, ..., b, are the prescribed external
loads. The coefficients A;; are determined by the geometry of the truss.

The behavior of continuous systems is described by differential equations rather
than algebraic equations. However, because numerical analysis can deal only with
discrete variables, it is first necessary to approximate a differential equation with a
system of algebraic equations. The well-known finite difference, finite element, and
boundary element methods of analysis work in this manner. They use different ap-
proximations to achieve the “discretization,” but in each case the final task is the
same: solve a system (often a very large system) of linear algebraic equations.

In summary, the modeling of linear systems invariably gives rise to equations
of the form Ax = b, where b is the input and x represents the response of the sys-
tem. The coefficient matrix A, which reflects the characteristics of the system, is in-
dependent of the input. In other words, if the input is changed, the equations have
to be solved again with a different b, but the same A. Therefore, it is desirable to have
an equation-solving algorithm that can handle any number of constant vectors with
minimal computational effort.

Methods of Solution

There are two classes of methods for solving systems of linear algebraic equations:
direct and iterative methods. The common characteristic of direct methods is that
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they transform the original equations into equivalent equations (equations that have
the same solution) that can be solved more easily. The transformation is carried out
by applying the three operations listed below. These so-called elementary operations
do not change the solution, but they may affect the determinant of the coefficient
matrix as indicated in parenthesis.

e Exchanging two equations (changes sign of |A|).

e Multiplying an equation by a nonzero constant (multiplies |A| by the same
constant).

e Multiplying an equation by a nonzero constant and then subtracting it from an-
other equation (leaves |A| unchanged).

Iterative methods or indirect methods start with a guess of the solution x, and
then repeatedly refine the solution until a certain convergence criterion is reached.
Iterative methods are generally less efficient than their direct counterparts, but they
do have significant computational advantages if the coefficient matrix is very large
and sparsely populated (most coefficients are zero).

Overview of Direct Methods

Table 2.1 lists three popular direct methods, each of which uses elementary opera-
tions to produce its own final form of easy-to-solve equations.

’ Method Initial form | Final form
Gauss elimination Ax=Db Ux=c
LU decomposition Ax=Db LUx=b
Gauss—Jordan elimination Ax=Db Ix=c

Table 2.1

In the above table, U represents an upper triangular matrix, L is a lower triangular
matrix, and I denotes the identity matrix. A square matrix is called triangular, if it
contains only zero elements on one side of the principal diagonal. Thus a 3 x 3 upper
triangular matrix has the form

Un U Us
U=| 0 Uy Uy
0 0 Uss

and a 3 x 3 lower triangular matrix appears as

L 0 0
L=| Ly Lyp O
L3; L3 Las
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Triangular matrices play an important role in linear algebra, since they simplify
many computations. For example, consider the equations Lx = ¢, or

Luxi=a
Loyxi + Loxxo = ¢

L31x1 + LapXxp + Lagxs = ¢3

If we solve the equations forwards, starting with the first equation, the computations
are very easy, since each equation would contain only one unknown at a time. The
solution would thus proceed as follows:

X1 =c¢/Ln

(c2 — La1x1)/ Lo

X2

X3 = (€3 — L31 X — L3»Xp)/ L33

This procedure is known as forward substitution. In a similar way, Ux = ¢, encoun-
tered in Gauss elimination, can easily be solved by back substitution, which starts
with the last equation and proceeds backwards through the equations.

The equations LUx = b, which are associated with LU decomposition, can also
be solved quickly if we replace them with two sets of equivalent equations: Ly = b
and Ux =y. Now Ly = b can be solved for y by forward substitution, followed by the
solution of Ux = y using back substitution.

The equations Ix = ¢, which are produced by Gauss-Jordan elimination, are
equivalent to x = ¢ (recall the identity Ix = x), so that c is already the solution.

EXAMPLE 2.1
Determine whether the following matrix is singular:

21 -0.6 1.1
A=|(32 47 -08
31 -65 4.1

Solution Laplace’s development (see Appendix A2) of the determinant about the first
row of A yields

47 -0.8
—6.5 4.1

32 -0.8
3.1 4.1

32 47

Al =2.1
31 —6.5

= 2.1(14.07) + 0.6(15.60) + 1.1(35.37) =0

Since the determinant is zero, the matrix is singular. It can be verified that the singu-
larity is due to the following row dependency: (row 3) = (3 x row 1) — (row 2).
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EXAMPLE 2.2
Solve the equations Ax = b, where

8 -6 2 28
A=|-4 11 -7 b= -40
4 -7 6 33

knowing that the LU decomposition of the coefficient matrix is (you should verify
this)

Solution We first solve the equations Ly = b by forward substitution:

21 =28 ¥y =28/2=14
N +2y,=—40  p=(—404+y)/2 = (-40+14)/2 = —13
Nn—y:+y3=33 ¥3=33-11+1»=33-14—-13=6

The solution x is then obtained from Ux = y by back substitution:

2x3 =3 X3=y3/2=6/2=3
4x) —3x3=)» X2 =(y24+3x3)/4=[-13+33)]/4=-1
4% - 3%+ X3 =N X1 =1 +3x%—x3)/4=[14+3(-1)-3]/4=2

Hence the solutionisx=[2 -1 3]7

Gauss Elimination Method
Introduction

Gauss elimination is the most familiar method for solving simultaneous equations. It
consists of two parts: the elimination phase and the solution phase. As indicated in
Table 2.1, the function of the elimination phase is to transform the equations into the
form Ux = c. The equations are then solved by back substitution. In order to illustrate
the procedure, let us solve the equations

4x —2x + x3 =11 (@)
—2x1 +4x; — 2x3 = —16 (b)
X1 —2X, +4x3 = 17 ()

Elimination Phase The elimination phase utilizes only one of the elementary op-
erations listed in Table 2.1 —- multiplying one equation (say, equation j) by a constant
A and subtracting it from another equation (equation i). The symbolic representation
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of this operation is
Eq. () < Eq. () — A x Eq. (j) (2.6)

The equation being subtracted, namely, Eq. (j), is called the pivot equation.
We start the elimination by taking Eq. (a) to be the pivot equation and choosing
the multipliers A so as to eliminate x; from Egs. (b) and (c):

Eq. (b) < Eq. (b) — (—0.5) x Eq. (a)
Eqg. (c) < Eq. (c) — 0.25 x Eq. (a)

After this transformation, the equations become

Ax; —2x5 +x3 =11 (a)
3x, — 1.5x3 = —10.5 (b)
—1.5x, + 3.75x3 = 14.25 (©)

This completes the first pass. Now we pick (b) as the pivot equation and eliminate x;,
from (c):

Eq. (c) « Eq. (c) — (— 0.5) x Eq.(b)

which yields the equations

A4x; —2Xxp +x3 = 11 (a)
3x; — 1.5x3 = —10.5 (b)
3X3 =9 (C)

The elimination phase is now complete. The original equations have been replaced
by equivalent equations that can be easily solved by back substitution.

As pointed out before, the augmented coefficient matrix is a more convenient
instrument for performing the computations. Thus the original equations would be
written as

4 -2 1| 11
-2 4 -2|-16
1 -2 4| 17

and the equivalent equations produced by the first and the second passes of Gauss
elimination would appear as

4 -2 1| 11.00
0 3 —1.5|-10.50
0 —-15 3.75] 14.25

4 =2 1} 11.0
0 3 -15/-105
0 O 3| 9.0
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It is important to note that the elementary row operation in Eq. (2.6) leaves the
determinant of the coefficient matrix unchanged. This is rather fortunate, since the
determinant of a triangular matrix is very easy to compute — it is the product of
the diagonal elements (you can verify this quite easily). In other words,

Al =U] = Ui x Usp x -+ x Upy 2.7

Back Substitution Phase The unknowns can now be computed by back substitu-
tion in the manner described in the previous article. Solving Egs. (c), (b), and (a) in
that order, we get

X3 =9/3=3
X2 = (=10.5 + 1.5x3)/3 = [—10.5 + 1.5(3)]/3 = —2

X1 =0142x —x3)/4=[114+2(-2)-3]/4=1

Algorithm for Gauss Elimination Method

Elimination Phase Let us look at the equations at some instant during the elim-
ination phase. Assume that the first k rows of A have already been transformed to
upper-triangular form. Therefore, the current pivot equation is the kth equation, and
all the equations below it are still to be transformed. This situation is depicted by the
augmented coefficient matrix shown below. Note that the components of A are not
the coefficients of the original equations (except for the first row), since they have
been altered by the elimination procedure. The same applies to the components of
the constant vector b.

(A A A - A - Ay - Aulb
0 Axp Ax -+ Ay - Azj - Agy|b
0 0 Asg -+ Ay -~ Agj .- Asy|bs
0 0 0 - Ag - Ay - Awlb | < pivotrow
0 0 0 - Ag - Ay - Ap|b | < row being
transformed
L0 0 0 - Am -+ Ay -+ Apn|by |

Let the ith row be a typical row below the pivot equation that is to be trans-
formed, meaning that the element A;; is to be eliminated. We can achieve this by
multiplying the pivot row by A = A;x/Akr and subtracting it from the ith row. The
corresponding changes in the ith row are

Ayj < Ay =My, j=kk+1,...,n (2.82)
bi < b; — by (2.8b)

e b (55ke annd - e 3590l - I e ol
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In order to transform the entire coefficient matrix to upper-triangular form, k and i
in Egs. (2.8) must have theranges k = 1, 2, ..., n — 1 (chooses the pivot row), i = k +
1, k+2, ..., n(chooses the row to be transformed). The algorithm for the elimination
phase now almost writes itself:

for k = 1:n-1
for i= k+1:n
if A(i,k) "= 0
lambda = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);
b(i)= b(i) - lambda*b(k);
end
end

end

In order to avoid unnecessary operations, the above algorithm departs slightly
from Egs. (2.8) in the following ways:

o If A; happens to be zero, the transformation of row i is skipped.

e The index j in Eq. (2.8a) starts with k + 1 rather than k. Therefore, A is not re-
placed by zero, but retains its original value. As the solution phase never accesses
the lower triangular portion of the coefficient matrix anyway, its contents are
irrelevant.

Back Substitution Phase After Gauss elimination the augmented coefficient ma-
trix has the form

An A Az - Anlb

0 Ay Axpx -+ Aylb

[A‘b] =| 0 0 Aszz -+ Asplbs
0 0 0 oo Aunlbn

The last equation, A, X, = by, is solved first, yielding

Xn = bp/Ann (2.9)
Consider now the stage of back substitution where x,, x,_1, ..., X1 have al-
ready been computed (in that order), and we are about to determine x; from the kth

equation

ApieXi + Ak k1 X1 + -+ + AknXn = b
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The solution is

n
1
X = | b — ZAijj A—kk, k=n-1n-2,...,1
j:

(2.10)
k+1

Equations (2.9) and (2.10) result in the following algorithm for back substitution:

for k = n:-1:1
b(k) = (b(k)

end

Operation Count

- A(k,k+1:n)*b(k+1:n))/ACk,k);

The execution time of an algorithm depends largely on the number of long opera-
tions (multiplications and divisions) performed. It can be shown that Gauss elimi-
nation contains approximately 7n%/3 such operations ( n is the number of equations)
in the elimination phase, and r?/2 operations in back substitution. These numbers
show that most of the computation time goes into the elimination phase. Moreover,

the time increases very rapidly with the number of equations.

B gauss

The function gauss combines the elimination and the back substitution phases.

During back substitution, b is overwritten by the solution vector x, so that b contains

the solution upon exit.

function [x,det] =

gauss(A,b)

% Solves A*x = b by Gauss elimination and computes det(A).

% USAGE: [x,det] = gauss(A,b)
if size(b,2) > 1; b = b’; end % b must be column vector
n = length(b);
for k = 1:n-1 % Elimination phase
for i= k+1:n
if A(i,k) =0
lambda = A(i,k)/A(k,k);
A(i,k+1:n) = A(di,k+1:n) - lambda*A(k,k+1:n);
b(i)= b(i) - lambda*b(k);
end
end
end
if nargout == 2; det = prod(diag(A)); end
for k = n:-1:1 % Back substitution phase
b(k) = (b(k) - Ak, k+1:n)*b(k+1:n))/ACk,k);
end
x = b;



www.MatlabKar.com e b (3l 4t - e 35901 - IS e ol

Systems of Linear Algebraic Equations

Multiple Sets of Equations

As mentioned before, it is frequently necessary to solve the equations Ax = b for sev-

eral constant vectors. Let there be m such constant vectors, denoted by by, by, ..., b,
and let the corresponding solution vectors be x;, X, . . ., X;;,. We denote multiple sets
of equations by AX = B, where

X:[Xl Xy - Xm] B:[bl b2 bm]

are n x m matrices whose columns consist of solution vectors and constant vectors,
respectively.

An economical way to handle such equations during the elimination phase is
to include all m constant vectors in the augmented coefficient matrix, so that they
are transformed simultaneously with the coefficient matrix. The solutions are then
obtained by back substitution in the usual manner, one vector at a time. It would
be quite easy to make the corresponding changes in gaussElimin. However, the LU
decomposition method, described in the next section, is more versatile in handling
multiple constant vectors.

EXAMPLE 2.3
Use Gauss elimination to solve the equations AX = B, where
6 —4 1 —14 22
A=| -4 6 —4 B= 36 —18
1 -4 6 6 7

Solution The augmented coefficient matrix is

6 —4 1{—-14 22
—4 6 —4| 36 -—18
1 -4 6| 6 7

The elimination phase consists of the following two passes:
Tow 2 <~ row 2 + (2/3) x row 1
row 3 < row 3 — (1/6) x row 1
6 —4 1/ -14 22

0 10/3 —10/3|80/3 —10/3
0 —10/3 35/6(25/3 10/3

and

row 3 < row 3 + row 2

6 —4 1| —14 22
0 10/3 —10/3|80/3 —10/3
0 0 5/2| 35 0
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In the solution phase, we first compute x; by back substitution:

35
X5 = — =14
31 5/2
. _ 80/3+(10/3)Xy _ 80/3 + (10/3)14 _
2= 10/3 - 10/3 -
—14+4Xp — X51  —14+4(22) — 14
X, = + 621 81 _ + ((3 ) — 10

Thus the first solution vector is
T T
x1=[X11 X, Xgl] =[10 22 14]

The second solution vector is computed next, also using back substitution:

X3 =0
~10/3 4+ (10/3) X3 —10/3 4+ 0
X22 = = = —l
10/3 10/3
22+ 4X5 — X 22+4(-1) -0
X — +4 X5 2 _ 22+ (=D _3
6 6
Therefore,
T T
X2=[X12 X2 st] =[3 -1 0]
EXAMPLE 2.4

An n x nVandermode matrix A is defined by
Aj=v"l, i=12...,n j=1,2,...,n

where v is a vector. In MATLAB a Vandermode matrix can be generated by the com-
mand vander (v). Use the function gauss to compute the solution of Ax = b, where
A is the 6 x 6 Vandermode matrix generated from the vector

v:[l.o 12 14 16 18 2.0]T
and
b:[o 1010 1]T

Also evaluate the accuracy of the solution (Vandermode matrices tend to be ill
conditioned).

Solution We used the program shown below. After constructing A and b, the output
format was changed to long so that the solution would be printed to 14 decimal
places. Here are the results:

% Example 2.4 (Gauss elimination)
A = vander(1:0.2:2);
b=[01010 1]";
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format long

[x,det] = gauss(A,b)

X =
1.0e+004 *
0.04166666666701
-0.31250000000246
0.92500000000697
-1.35000000000972
0.97093333334002
-0.27510000000181

det =
-1.132462079991823e-006

As the determinant is quite small relative to the elements of A (you may want to
print A to verify this), we expect detectable roundoff error. Inspection of x leads us to
suspect that the exact solution is

T
x=[1250/3 —3125 9250 —13500 29128/3 —2751]

in which case the numerical solution would be accurate to 9 decimal places.
Another way to gage the accuracy of the solution is to compute Ax and compare
the result to b:

>> A¥*X
ans =
-0.00000000000091
0.99999999999909
-0.00000000000819
0.99999999998272
-0.00000000005366
0.99999999994998

The result seems to confirm our previous conclusion.

LU Decomposition Methods
Introduction

It is possible to show that any square matrix A can be expressed as a product of a
lower triangular matrix L and an upper triangular matrix U:

A=1U (2.11)

e b (55kw annd - e 3590l - I e ol
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The process of computing L and U for a given A is known as LU decomposition or
LU factorization. LU decomposition is not unique (the combinations of L and U for
a prescribed A are endless), unless certain constraints are placed on L or U. These
constraints distinguish one type of decomposition from another. Three commonly
used decompositions are listed in Table 2.2.

Name Constraints

Doolittle’s decomposition Liy=1 i=12,...,n
Crout’s decomposition U;=1 i=12,...,n
Choleski’s decomposition | L=U"

Table 2.2

After decomposing A, it is easy to solve the equations Ax = b, as pointed out
in Section 2.1. We first rewrite the equations as LUx = b. Upon using the notation
Ux =y, the equations become

Ly=b
which can be solved for y by forward substitution. Then
Ux=y

will yield x by the back substitution process.

The advantage of LU decomposition over the Gauss elimination method is that
once A is decomposed, we can solve Ax = b for as many constant vectors b as we
please. The cost of each additional solution is relatively small, since the forward and
back substitution operations are much less time-consuming than the decomposition
process.

Doolittle’s Decomposition Method

Decomposition Phase
Doolittle’s decomposition is closely related to Gauss elimination. In order to illus-
trate the relationship, consider a 3 x 3 matrix A and assume that there exist triangular

matrices
1 0 0 Un U Us
L=|1, 1 O U=| 0 Uy Usx

such that A = LU. After completing the multiplication on the right-hand side, we get

Un Ur2 Uiz
A= | Unly UpLy+ U Uiz L2y + Uz (2.12)
UiiLsi ULz + Uxp L3 UizLsy + Uz L3z + Uss
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Let us now apply Gauss elimination to Eq. (2.12). The first pass of the elimina-
tion procedure consists of choosing the first row as the pivot row and applying the
elementary operations

row 2 < row 2 — Ly; x row 1 (eliminates A,;)
row 3 < row 3 — L3; x row 1 (eliminates Asz;)

The result is

Un U, Uiz
A = 0 Us» Uas
0 UxLsy UxLs+ Uss

In the next pass, we take the second row as the pivot row and utilize the operation

row 3 < row 3 — L3, x row 2 (eliminates As,)

ending up with
Ull Ul2 U13
A'=0U= 0 Uzg U23
0 0 Uss

The foregoing illustration reveals two important features of Doolittle’s decompo-
sition:

e The matrix U is identical to the upper triangular matrix that results from Gauss
elimination.

e The off-diagonal elements of L are the pivot equation multipliers used during
Gauss elimination; that is, L; is the multiplier that eliminated A;;.

It is usual practice to store the multipliers in the lower triangular portion of the
coefficient matrix, replacing the coefficients as they are eliminated (L;; replacing A;;).
The diagonal elements of L do not have to be stored, since it is understood that each
of them is unity. The final form of the coefficient matrix would thus be the following
mixture of L and U:

Ui U Us
(L\U] = | Lyy U Uss (2.13)
L3; L3 Uss

The algorithm for Doolittle’s decomposition is thus identical to the Gauss elim-
ination procedure in gauss, except that each multiplier A is now stored in the lower
triangular portion of A.

The number of long operations in L/U decomposition is the same as in Gauss
elimination, namely, n®/3.
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W LUdec

In this version of LU decomposition the original A is destroyed and replaced by its
decomposed form [L\U].

function A = LUdec(A)
% LU decomposition of matrix A; returns A = [L\U].
% USAGE: A = LUdec(A)

n = size(A,1);
for k = 1:n-1
for i = k+1:n
if A(di,k) "= 0.0
lambda = A(i,k)/A(k,k);
A(i,k+1:n) = A(di,k+1:n) - lambda*A(k,k+1:n);
A(i,k) = lambda;
end
end

end

Solution Phase
Consider now the procedure for the solution of Ly = b by forward substitution. The
scalar form of the equations is (recall that L;; = 1)

n="bh

Loy+y=b

Luyi + Lieys + - + L k—1Yk—1 + Y& = b

Solving the kth equation for yj yields

k-1
Ye=be =Y Lyyj, k=23,...,n (2.14)
j=1

which gives us the forward substitution algorithm:
for k = 2:n

b(k)= b(k) - A(k,1:k-1)*y(1l:k-1);

end

The back substitution phase for solving Ux = y is identical to what was used in
the Gauss elimination method.
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W LUsol

This function carries out the solution phase (forward and back substitutions). It is as-
sumed that the original coefficient matrix has been decomposed, so that the input is
A = [L\U]. The contents of b are replaced by y during forward substitution. Similarly,
back substitution overwrites y with the solution x.

function x = LUsol(A,b)

% Solves L*U*b = x, where A contains both L and U;
% that is, A has the form [L\U].

% USAGE: x = LUsol(A,b)

if size(b,2) > 1; b = b’; end
n = length(b);
for k = 2:n
b(k) = b(k) - A(k,1:k-1)*b(1:k-1);
end
for k = n:-1:1
b(k) = (b(k) - Ak, k+1:n)*b(k+1:n))/ACk,k);
end

x = b;

Choleski’s Decomposition Method

Choleski’s decomposition A = LL” has two limitations:

e Since the matrix product LL” is always symmetric, Choleski’s decomposition can
be applied only to symmetric matrices.

e The decomposition process involves taking square roots of certain combinations
of the elements of A. It can be shown that square roots of negative numbers can
be avoided only if A is positive definite.

Choleski’s decomposition contains approximately #%/6 long operations plus n
square root computations. This is about half the number of operations required in
LU decomposition. The relative efficiency of Choleski’s decomposition is due to its
exploitation of symmetry.

Let us start by looking at Choleski’s decomposition

A=LL" (2.15)
of a3 x 3 matrix:
An Ap A Ly, O 0 Ly Ly Ly
Apy App Apz | =| Ly Lyp O 0 Lyp L3

Az Az Az L3y L3 Las 0 0 L33
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After completing the matrix multiplication on the right hand side, we get

A A A L2, Ly Ly L1 Ly
Ay Ap Asz | =| LuLxn L3 + L3, Loy L3y + Loy L3, (2.16)
Az Az Az LinLsi LoyLsy + Lop Ly, L5, + L3, + L%,

Note that the right-hand-side matrix is symmetric, as pointed out before. Equating
the matrices A and LL” element-by-element, we obtain six equations (due to sym-
metry only lower or upper triangular elements have to be considered) in the six un-
known components of L. By solving these equations in a certain order, it is possible
to have only one unknown in each equation.

Consider the lower triangular portion of each matrix in Eq. (2.16) (the upper tri-
angular portion would do as well). By equating the elements in the first column, start-
ing with the first row and proceeding downward, we can compute L1, Lo, and Ls;
in that order:

AH = L%l Lll = \/All
Apy = LiiLy Ly = Az /Ln

Az = LiiLy L3 = Az1/Ln
The second column, starting with second row, yields Ly, and Ls;:
Ap = L5 + L3, Loz = \J Az — L5,
Azp = Lp1 L3y + Loy L3> L3» = (A3 — Loy L31)/ Ly
Finally, the third column, third row, gives us Lss:
Az = L5 + Lo + L33 Lez=/Ass— L3, — L3,

We can now extrapolate the results for an n x n matrix. We observe that a typical
element in the lower triangular portion of LL is of the form

j
(LLT)ij =LgLji+ LpLjp+---+ LijjLjj = Z Lix Lji, i>j
k=1

Equating this term to the corresponding element of A yields

i
Ay = LaLjx, i=jj+1,...,n j=12...,n (2.17)
k=1

The range of indices shown limits the elements to the lower triangular part. For the
first column (j = 1), we obtain from Eq. (2.17)

Ly =+vAn Ly =An/Ln, i=23,...,n (2.18)

Proceeding to other columns, we observe that the unknown in Eq. (2.17) is L;; (the
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other elements of L appearing in the equation have already been computed). Taking
the term containing L;; outside the summation in Eq. (2.17), we obtain

2, j=23,...,n (2.19)

For a nondiagonal term, we get

j-1
Lj=|Ayj =Y LaLj|/Ljj j=23,...,n-1, i=j+1,j+2,...,n (220)
k=1
B choleski

Note that in Egs. (2.19) and (2.20), A;; appears only in the formula for L;;. Therefore,
once L;; has been computed, A;; is no longer needed. This makes it possible to write
the elements of L over the lower triangular portion of A as they are computed. The el-
ements above the principal diagonal of A will remain untouched. At the conclusion of
decomposition, L is extracted with the MATLAB command tril (A). If a negative L? ;
is encountered during decomposition, an error message is printed and the program
is terminated.

function L = choleski(A)
% Computes L in Choleski’s decomposition A = LL’.
% USAGE: L = choleski(A)

n = size(A,1);
for j = 1:n
temp = A(J,J) - dot(A(j,1:3-1),A(3,1:3-1));
if temp < 0.0
error(’Matrix is not positive definite’)
end
A(J,3J) = sqrt(temp);
for i = j+l1:n
A(i,J)=(A(1,]J) - dot(A(i,1:J-1),A(J,1:3-111)/A(3,3);
end
end
L = tril(A)
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B choleskiSol

After the coefficient matrix A has been decomposed, the solution of Ax = b can be
obtained by the usual forward and back substitution operations. The following func-
tion (given without derivation) carries out the solution phase.

function x = choleskiSol(L,b)
% Solves [L][L’]{x} = {b}
% USAGE: x = choleskiSol(L,b)

n = length(b);
if size(b,2) > 1; b = b’; end % {b} must be column vector
for k = 1:n % Solution of [L]{y} = {b}
b(k) = (b(k) - dot(L(k,1:k-1),b(1:k-1)’))/L(k,k);
end
for k = n:-1:1 % Solution of {L}’'{x} = {y}
b(k) = (b(k) - dot(L(k+1l:n,k),b(k+1:n)))/L(k,k);
end

x = b;

Other Methods

Crout’s Decomposition

Recall that the various decompositions A = LU are characterized by the constraints
placed on the elements of L or U. In Doolittle’s decomposition the diagonal elements
of L were set to 1. An equally viable method is Crout’s decomposition, where the 1s
lie on diagonal of U. There is little difference in the performance of the two methods.

Gauss-Jordan Elimination
The Gauss-Jordan method is essentially Gauss elimination taken to its limit. In the
Gauss elimination method only the equations that lie below the pivot equation are
transformed. In the Gauss-Jordan method the elimination is also carried out on
equations above the pivot equation, resulting in a diagonal coefficient matrix.

The main disadvantage of Gauss-Jordan elimination is that it involves about n3 /2
long operations, which is 1.5 times the number required in Gauss elimination.

EXAMPLE 2.5
Use Doolittle’s decomposition method to solve the equations Ax = b, where

1 4 1 7
A=|1 6 -1 b=|13
2 -1 2 5
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Solution We first decompose A by Gauss elimination. The first pass consists of the
elementary operations

row2 < row2 — 1 x row 1 (eliminates A»;)
row 3 < row3 — 2 x row 1 (eliminates Az;)

Storing the multipliers L,; =1 and Ls; = 2 in place of the eliminated terms, we

obtain
1 4 1
A=|[1] 2 =2
2] -9 0

where the multipliers are shown in brackets.
The second pass of Gauss elimination uses the operation

row 3 < row 3 — (—4.5) x row 2 (eliminates As,)

Since we do not wish to touch the multipliers, the bracketed terms are excluded from
the operation. Storing the multiplier L3, = —4.5 in place of A3, we get

1 4 1
A'=[L\UI=|[1] 2 -2
| 2] [-45] -9

The decomposition is now complete, with

1 0 O] 1 4 1
L=|1 1 o0 U=|0 2 -2
2 —45 1 00 -9

Solution of Ly = b by forward substitution comes next. The augmented coeffi-
cient form of the equations is

1 o o7
[L\b]: 1 1 o013
2 —45 1|5

The solution is

n==7

$2=13—y=13-7=6

y3=5—2y + 45y, =5—2(7) +4.5(6) = 18
Finally, the equations Ux =y, or

14 17
[U\y]: 02 -2/ 6
0 0 918

e b (55kw annd - e 3590l - I e ol
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are solved by back substitution. This yields

18
X3=?9=—2
X _6+2.X3 _6+2(_2) -1
2T T 2 T

X1=7—-4x—-x3=7-4(1)—-(-2)=5

EXAMPLE 2.6
Compute Choleski’s decomposition of the matrix

4 -2 2
A=| -2 2 -4
2 -4 11

Solution First, we note that A is symmetric. Therefore, Choleski’s decomposition is
applicable, provided that the matrix is also positive definite. An a priori test for posi-
tive definiteness is not needed, since the decomposition algorithm contains its own
test: if square root of a negative number is encountered, the matrix is not positive
definite and the decomposition fails.

Substituting the given matrix for A in Eq. (2.16), we obtain

4 -2 2 L%l Ly Ly L1 L3
-2 2 —4|=|Lnly L3+13 Ly1L31 + Loy L3
2 -4 11 LiLsi LoLai + LapLsp L3, + L3, + L3,

Equating the elements in the lower (or upper) triangular portions yields
Ly =+4=2
Ly =-2/L1=-2/2=-1
L3 =2/Ln=2/2=1

Lyp=,/2—-13 =y2-12=1

—4 — Ly Ly _ —4—-(-1@) __3

L22 1
Lgs = /11— L% — 12, =11 - (12— (-3)2 =1

Therefore,
2 0 0
L=| -1 10
1 -3 1

The result can easily be verified by performing the multiplication LL”.
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EXAMPLE 2.7
Solve AX = B with Doolittle’s decomposition and compute |A|, where
3 -1 4 6 —4
A=| -2 0 5 B=|3 2
7 2 =2 7 =5

Solution In the program below, the coefficient matrix A is first decomposed by call-
ing LUdec. Then LUsol is used to compute the solution one vector at a time.

% Example 2.7 (Doolittle’s decomposition)

A=1[3-14; -2 05; 72 -2];
B =1[6 -4; 3 2; 7 -5];
A = LUdec(A);
det = prod(diag(A))
for i = 1:size(B,2)
X(:,1) = LUsol(A,B(:,1));
end
X
Here are the results:
>> det =
-77
X =
1.0000 -1.0000
1.0000 1.0000
1.0000 0.0000
EXAMPLE 2.8
Solve the equations Ax = b by Choleski’s decomposition, where
144 —-0.36 5.52 0.00 0.04
A— —-0.36 10.33 -—-7.78 0.00 b— -2.15
5,52 —7.78 28.40 9.00 0
0.00 0.00 9.00 61.00 0.88

Also check the solution.

Solution The following program utilizes the functions choleski and choleskiSol.
The solution is checked by computing Ax.

% Example 2.8 (Choleski decomposition)

A =[1.44 -0.36 5.52 0.00;
-0.36 10.33 -7.78 0.00;
5.52 -7.78 28.40 9.00;
0.00 0.00 9.00 61.0017;
b =[0.04 -2.15 0 0.88];
L = choleski(A);
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x = choleskiSol(L,b)
Check = A*x % Verify the result

3.0921
-0.7387
-0.8476

0.1395

0.0400
-2.1500
-0.0000

0.880

PROBLEM SET 2.1

1. By evaluating the determinant, classify the following matrices as singular, ill con-
ditioned, or well conditioned.

[1 2 3 211 -0.80 1.72
@ A=|2 3 4 b) A=|-184 3.03 1.29
13 4 5 —157 525 4.30
2 -1 o0 4 3 -1
© A=|-1 2 -1 d A=|7 -2 3
0 -1 2 5 —18 13

2. Given the LU decomposition A = LU, determine A and |A]| .

[1 0 o 1 2 4
@ L=|1 1 o0 U=|0 3 21
|1 5/3 1 00 0
2 00 2 -1 1
) L=|-1 1 0 U=(0 1 -3
1 -3 1 0 0 1

3. Utilize the results of LU decomposition

1 0o 0][2 -3 -1
A=LU=[3/2 1 o0||0 132 -7/2
1/2 1113 1||0 o 32/13

tosolve Ax = b, whereb” =[1 -1 2].
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4. Use Gauss elimination to solve the equations Ax = b, where

2 -3 -1 3
A=|3 2 -5 b=| -9
2 4 -1 -5

5. Solve the equations AX = B by Gauss elimination, where

20 -1 0 10
A— 01 2 0 B— 00
-1 2 0 1 01
00 1 -2 00
6. Solve the equations Ax = b by Gauss elimination, where
oo 2 1 2
01 0 2 -1
A=|1 2 0 -2 0 b=| -4
00 0 -1 1 -2
01 -1 1 -1 -1

Hint: Reorder the equations before solving.
7. Find L and U so that

4 -1 0
A=LU=| -1 4 -1
0 -1 4

using (a) Doolittle’s decomposition; (b) Choleski’s decomposition.
8. Use Doolittle’s decomposition method to solve Ax = b, where

-3 6 —4 -3
A= 9 -8 24 b= 65
—-12 24 -26 —42

9. Solve the equations AX = b by Doolittle’s decomposition method, where

234 —4.10 1.78 0.02
A=|-1.98 3.47 =222 b=| -0.73
236 -—-15.17 6.18 —6.63

10. Solve the equations AX = B by Doolittle’s decomposition method, where

4 -3 6 1 0
A= 8 -3 10 B=|0 1
-4 12 -10 0 0

11. Solve the equations Ax = b by Choleski’s decomposition method, where

111
A=|1 2 2 b=|3/2
1 23 3
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12. Solve the equations

4 -2 -3 X1 1.1
12 4 -10 X | = 0
—16 28 18 X3 2.3

by Doolittle’s decomposition method.
13. Determine L that results from Choleski’s decomposition of the diagonal matrix

(04} 0 0
0 (0% 0
A=10 0

14. ® Modify the function gauss so that it will work with m constant vectors. Test
the program by solving AX = B, where

2 -1 0 1 00
A=| -1 2 -1 B=|(0 1 0
0 -1 2 0 01

15. B A well-known example of an ill-conditioned matrix is the Hilbert matrix

1 12 1/3
12 1/3 1/4
A=11/3 174 15

Write a program that specializes in solving the equations Ax = b by Doolittle’s
decomposition method, where A is the Hilbert matrix of arbitrary size n x n, and

n
b; = ZAij
=1

The program should have no input apart from 7. By running the program, deter-
mine the largest n for which the solution is within six significant figures of the
exact solution

x=[1 11 ]T

(the results depend on the software and the hardware used).

16. Derive the forward and back substitution algorithms for the solution phase of
Choleski’s method. Compare them with the function choleskiSol.

17. W Determine the coefficients of the polynomial y = ay + a;x + a»x* + asx® that
passes through the points (0, 10), (1, 35), (3, 31), and (4, 2).

18. B Determine the fourth-degree polynomial y(x) that passes through the points
0,-1),(1, 1), (3,3),(5,2),and (6, —2).

19. MW Find the fourth-degree polynomial y(x) that passes through the points (0, 1),
(0.75, —0.25), and (1, 1), and has zero curvature at (0, 1) and (1, 1).

e b (55ke annd - e 3590l - I e ol
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20. M Solve the equations Ax = b, where

3.50 277 -0.76 1.80 7.31
A— —-1.80 2.68 3.44 -0.09 b— 4.23
0.27 5.07 6.90 1.61 13.85
1.71 5.45 2.68 1.71 11.55

By computing |A| and Ax, comment on the accuracy of the solution.
21. Compute the condition number of the matrix

1 -1 -1
A=1|0 1 -2
0 0 1

based on (a) the euclidean norm and (b) the infinity norm. You may use the
MATLAB function inv(A) to determine the inverse of A.

22. M Write a function that returns the condition number of a matrix based on the
euclidean norm. Test the function by computing the condition number of the
ill-conditioned matrix

1 4 9 16
| 4 9 16 25
| 9 16 25 36

16 25 36 49

Use the MATLAB function inv(A) to determine the inverse of A.

Symmetric and Banded Coefficient Matrices
Introduction

Engineering problems often lead to coefficient matrices that are sparsely populated,
meaning that most elements of the matrix are zero. If all the nonzero terms are clus-
tered about the leading diagonal, then the matrix is said to be banded. An example of
a banded matrix is

XX 0 0 0
XXX 00
A=]0 X X X 0
0 0 X X X
0 0 0 X X

where Xs denote the nonzero elements that form the populated band (some of these
elements may be zero). All the elements lying outside the band are zero. The matrix
shown above has a bandwidth of three, since there are at most three nonzero ele-
ments in each row (or column). Such a matrix is called tridiagonal.

If a banded matrix is decomposed in the form A = LU, both L and U will retain
the banded structure of A. For example, if we decomposed the matrix shown above,
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we would get

X 0 0 0 O X X 0 0O
XX 0 00 0 X X 00
L=/0 X X 0 O U=|0 0 X X O
0 0 X X O 0 0 0 X X
0 0 0 X X 0 0 0 0 X

The banded structure of a coefficient matrix can be exploited to save storage and
computation time. If the coefficient matrix is also symmetric, further economies are
possible. In this section, we show how the methods of solution discussed previously
can be adapted for banded and symmetric coefficient matrices.

Tridiagonal Coefficient Matrix

Consider the solution of Ax = b by Doolittle’s decomposition, where A is the n x n
tridiagonal matrix

dl e 0 0 0

C1 Cb (%) 0 0

0 Co Ck (%] 0

A=l0 0 ¢ d 0
(0 0 ... 0 ¢y dy]

As the notation implies, we are storing the nonzero elements of A in the vectors

d
9] d €1
2
C2 €
c -1 e
n—1 n—1
dn

The resulting saving of storage can be significant. For example, a 100 x 100 tridiag-
onal matrix, containing 10 000 elements, can be stored in only 99 + 100 + 99 = 298
locations, which represents a compression ratio of about 33:1.

We now apply LU decomposition to the coefficient matrix. We deduce row k by
getting rid of c¢x_; with the elementary operation

row k < row k — (cx_1/dy_1) xrow (k—1), k=2,3,...,n
The corresponding change in dy. is
dy < di — (Ck—1/dk-1) €1 (2.21)

whereas e, is not affected. In order to finish up with Doolittle’s decomposition of the
form [L\U], we store the multiplier A = c¢x_1/dj_1 in the location previously occupied
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by ck-1:
Ck—1 < Cr—1/dk—1 (2.22)
Thus the decomposition algorithm is

for k = 2:n
lambda = c(k-1)/d(k-1);
d(k) = d(k) - lambda*e(k-1);
c(k-1) = lambda;

end

Next, we look at the solution phase, that is, solution of the Ly = b, followed by
Ux =y. The equations Ly = b can be portrayed by the augmented coefficient matrix

1 0 0 O 0|b,

a1 0 0 0(b,

0 o 1 0 0 b3

[L‘b] =10 0 ¢ 1 0|bs
[0 0 - 0 cu1 1(by |

Note that the original contents of ¢ were destroyed and replaced by the multipliers
during the decomposition. The solution algorithm for y by forward substitution is

y(1) = b(1)
for k = 2:n

y(k) = b(k) - c(k-1)*y(k-1);
end

The augmented coefficient matrix representing Ux = y is

dl €1 0 s 0 0 N
0 dg e - 0 0 )2
0 0 dg 0 0 V3
[oly]=|. . . A
0 0 0 e dnfl €n—1|Yn-1
0 0 0 - 0 dn | Yn |

Note again that the contents of d were altered from the original values during the
decomposition phase (but e was unchanged). The solution for x is obtained by back
substitution using the algorithm

x(n) = y(n)/d(n);
for k = n-1:-1:1

x(k) = (y(k) - e(k)*x(k+1))/d(k);
end
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W LUdec3

The function LUdec3 contains the code for the decomposition phase. The original
vectors c¢ and d are destroyed and replaced by the vectors of the decomposed matrix.

function [c,d,e] = LUdec3(c,d,e)
% LU decomposition of tridiagonal matrix A = [c\d\e].
% USAGE: [c,d,e] = LUdec3(c,d,e)

n = length(d);

for k = 2:n
lambda = c(k-1)/d(k-1);
d(k) = d(k) - lambda*e(k-1);
c(k-1) = lambda;

end

B LUsol3

Here is the function for the solution phase. The vector y overwrites the constant vec-
tor b during the forward substitution. Similarly, the solution vector x replaces y in the
back substitution process.

function x = LUsol3(c,d,e,b)

% Solves A*x = b where A = [c\d\e] is the LU
% decomposition of the original tridiagonal A.
% USAGE: x = LUsol3(c,d,e,b)

n = length(d);

for k = 2:n % Forward substitution
b(k) = b(k) - c(k-1)*b(k-1);

end

b(n) = b(n)/d(n); % Back substitution

for k = n-1:-1:1
b(k) = (b(k) -e(k)*b(k+1))/d(k);

end

x = b;

Symmetric Coefficient Matrices

More often than not, coefficient matrices that arise in engineering problems are
symmetric as well as banded. Therefore, it is worthwhile to discover special prop-
erties of such matrices, and learn how to utilize them in the construction of efficient
algorithmes.
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If the matrix A is symmetric, then the LU decomposition can be presented in the
form

A=LU=LDL" (2.23)

where D is a diagonal matrix. An example is Choleski’s decomposition A = LL” that
was discussed in the previous section (in this case D = I). For Doolittle’s decomposi-
tion, we have

Di 0 0 -« O07[1 Ly Ly - Ln
o D, 0 --. 0 0 1 L3 -+ Ly
U=DLT’=]| O 0 Ds --- O 0 O 1 -+ Ly
0 0 0 D, 0 O 0 1
which gives
Dy DiLy DiLyi --- DiLp
0 D, DyLyp -+ DoLp
u=| 0 0 Ds -+ Dsls, (2.24)
0 0 0 ... D,

We see that during decomposition of a symmetric matrix only U has to be stored,
since D and L can be easily recovered from U. Thus Gauss elimination, which results
in an upper triangular matrix of the form shown in Eq. (2.24), is sufficient to decom-
pose a symmetric matrix.

There is an alternative storage scheme that can be employed during LU decom-
position. The idea is to arrive at the matrix

Dy Ly L3y -+ Lp
0 Dy Lgp -+ Lp

Ur=|0 0 Dy -+ Ly (2.25)
0 0 0 -~ Dy

Here U can be recovered from U;; = D;Lj;. It turns out that this scheme leads to a
computationally more efficient solution phase; therefore, we adopt it for symmetric,
banded matrices.

Symmetric, Pentadiagonal Coefficient Matrix

We encounter pentadiagonal (bandwidth = 5) coefficient matrices in the solution
of fourth-order, ordinary differential equations by finite differences. Often these

e b (55kw annd - e 3590l - I e ol
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matrices are symmetric, in which case an n x n matrix has the form

e ﬁ 0 0 0 0
ee d e fp 0 0 0
i e d e f 0 0
0 L e di e fa 0
A=| . . . . ) ) ) ) (2.26)
0 -+ 0 fia €3 duz eno fao
0 -+ 0 0 fu3z ew2 dp1 e
B 0 s 0 0 0 fn—2 en—1 dn i
As in the case of tridiagonal matrices, we store the nonzero elements in the three
vectors
] )
d ! fi
€ f
: P
d = ° e = f = .
dn_» . :
—2
dnfl en fl‘1*2
dn n—1

Let us now look at the solution of the equations Ax = b by Doolittle’s decomposi-
tion. The first step is to transform A to upper triangular form by Gauss elimination. If
elimination has progressed to the stage where the kth row has become the pivot row,
we have the following situation

d. e Jr 0 0 0 |«

0

A— Oler diy1 ex+ fk+1 0 0
Ol fi €1 dis2l€r2  fire 0
0

0  fir1 e+2|dits €43 fiss

The elements e, and f; below the pivot row are eliminated by the operations
row (k + 1) < row (k + 1) — (ex/dy) x row k
row (k + 2) < row (k + 2) — (fi/di) x row k

The only terms (other than those being eliminated) that are changed by the above
operations are

diy1 < di — (ex/di)ex
€1 < €1 — (e/di) fi (2.27a)

dicy2 < diz — (fo/di) fi
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Storage of the multipliers in the upper triangular portion of the matrix results in
ex < ex/dx fe < fe/dk (2.27b)

At the conclusion of the elimination phase the matrix has the form (do not confuse
d, e, and f with the original contents of A)

_dl e ﬁ 0 0 ]
0 dg (%) f2 0
0 0 dg e3 0
U =
0 0 0 dn,1 €n—1
(0 0 - 0 0 dy |

Now comes the solution phase. The equations Ly = b have the augmented coef-
ficient matrix

1 0 O 0 0| b
€] 1 0 0 0 bg
ﬁ € 1 0 0 b3
[L‘b] =10 f e 1 0| b,
L 0 0 0 ]‘;1_2 €n—1 1 bn i
Solution by forward substitution yields
1= b,
V2 =b—ey (2.28)

Vi =br — ficoVk—2 —@&1yi-1, k=3,4,...,n

The equations to be solved by back substitution, namely, Ux =y, have the aug-
mented coefficient matrix

d1 d1€1 dlﬁ 0 o 0 yl
0 dg dgeg dgfé e 0 y2
0 0 dg dg@g s 0 V3
[uly] = o .
0 0 s 0 dp1 dp_18n-1|Yn-1
0 0 - 0 0 dn | yn |

the solution of which is obtained by back substitution:
Xn = Yn/dn

Xp—1 = ynfl/dnfl — €n—1Xp

Xk = Vi/dx — X1 — fiXky2, k=n—-2,n-3,...,1
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W LUdec5

The function LUdec 5 decomposes a symmetric, pentadiagonal matrix A stored in the
form A = [f\e\d\e\f]. The original vectors d, e, and f are destroyed and replaced by
the vectors of the decomposed matrix.

function [d,e,f] = LUdec5(d,e, f)
% LU decomposition of pentadiagonal matrix A = [f\e\d\e\f].
% USAGE: [d,e,f] = LUdec5(d,e,f)

n = length(d);

for k = 1:n-2
lambda = e(k)/d(k);
d(k+1) d(k+1) - lambda*e(k);
e(k+1) e(k+1) - lambda*f(k);
e(k) = lambda;
lambda = f(k)/d(k);
d(k+2) = d(k+2) - lambda*f(k);
f(k) = lambda;

end

lambda = e(n-1)/d(n-1);

d(n) = d(n) - lambda*e(n-1);
e(n-1) = lambda;

W LUsol5

LUsol5 is the function for the solution phase. As in LUsol13, the vector y over-
writes the constant vector b during forward substitution and x replaces y during back
substitution.

function x = LUsol5(d,e,f,b)
% Solves A*x = b where A = [f\e\d\e\f] is the LU
% decomposition of the original pentadiagonal A.
% USAGE: x = LUsol5(d,e,f,b)

n = length(d);

b(2) = b(2) - e(1)*b(1); % Forward substitution
for k = 3:n

b(k) = b(k) - e(k-1)*b(k-1) - f(k-2)*b(k-2);

end

b(n) = b(n)/d(n); % Back substitution

b(n-1) = b(n-1)/d(n-1) - e(n-1)*b(n);
for k = n-2:-1:1
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b(k) = b(k)/d(k) - e(K)*b(k+1l) - £f(k)*b(k+2);

end
x = b;
EXAMPLE 2.9
As a result of Gauss elimination, a symmetric matrix A was transformed to the upper
triangular form

4 -2 1 0

0 3 -3

U /2 1
0 0 3 —3/2
0 0 0 35/12

Determine the original matrix A.

Solution First, we find L in the decomposition A = LU. Dividing each row of U by its
diagonal element yields

1 —1/2 1/4 0
LT 0 1 -1/2  1/3
0 0 1 —1/2
0 0 0 1
Therefore, A = LU, or
i 1 0 0 0][4 -2 1 0
Ao —1/2 1 0 0[|0 3 —3/2 1
T 14 —172 1 0(|l0 O 3 -3/2
0 1/3 -1/2 1|0 o 0 35/12

4 -2 1 0
-2 4 -2 1
1 -2 4 -2
0 1 -2 4

EXAMPLE 2.10
Determine L and D that result from Doolittle’s decomposition A = LDL” of the sym-
metric matrix

3 -3 3
A=| -3 5 1
3 1 10

Solution We use Gauss elimination, storing the multipliers in the upper triangular
portion of A. At the completion of elimination, the matrix will have the form of U* in
Eq. (2.25).
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The terms to be eliminated in the first pass are A,; and As; using the elementary
operations

row2 < row2 — (—1) x row 1
row3 < row3 — (1) x row 1

Storing the multipliers —1 and 1 in the locations occupied by A;, and A;3, we get

3 -1 1
A=(0 2
0o 4 7

The second pass is the operation
row 3 <~ row 3 — 2 x row 2

which yields after overwriting A,3 with the multiplier 2

3 -1 1
A’=[0\D\L"]=0 2 2
0 0 -1
Hence
1 00 30 0
L=|(-11 0 D=|0 2 0
1 2 1 0 0 -1
EXAMPLE 2.11
Solve Ax = b, where
6 -4 1 0 o0 1M 1 [3]
-4 6 -4 1 0 X 0
1 -4 6 -4 1 X3 0
A: =
0 1 -4 6 —4]|] x9 0
L 0 0 1 —4 7_ _Xl()_ _4_

Solution As the coefficient matrix is symmetric and pentadiagonal, we utilize the
functions LUdec5 and LUso15:

% Example 2.11 (Solution of pentadiagonal egs.)
n = 10;

d = 6*ones(n,1); d(n) = 7;

e = -4*ones(n-1,1);

f = ones(n-2,1);

b = zeros(n,1l); b(1l) = 3; b(n) = 4;

[d,e,f] = LUdec5(d,e,f);

x = LUsol5(d,e,f,b)
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The output from the program is

>> X =

.3872
.1955
.4586
.2105
.4850
.3158
.7368
.7820
.4850
.8797

R w s 1O 0 1N

Pivoting
Introduction

Sometimes the order in which the equations are presented to the solution algorithm
has a significant effect on the results. For example, consider the equations

20 —Xx =1
—X1+2x—x3=0
—X+x3=0

The corresponding augmented coefficient matrix is

2 —1 o)1
[A\b]: -1 2 -1/o (@)
0 -1 1o

Equations (a) are in the “right order” in the sense that we would have no trouble
obtaining the correct solution x; = x; = x3 = 1 by Gauss elimination or LU decom-
position. Now suppose that we exchange the first and third equations, so that the
augmented coefficient matrix becomes

o -1 1o
[A\b]: -1 2 -1lo (b)
2 -1 0|1

Since we did not change the equations (only their order was altered), the solution is
still x; = x, = x3 = 1. However, Gauss elimination fails immediately due to the pres-
ence of the zero pivot element (the element A;;).

The above example demonstrates that it is sometimes essential to reorder the
equations during the elimination phase. The reordering, or row pivoting, is also
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required if the pivot element is not zero, but very small in comparison to other el-
ements in the pivot row, as demonstrated by the following set of equations:

e -1 1(0
[A\b]: -1 2 —1lo ©
2 —1 o1

These equations are the same as Egs. (b), except that the small number ¢ replaces the
zero element in Eq. (b). Therefore, if we let ¢ — 0, the solutions of Egs. (b) and (c)
should become identical. After the first phase of Gauss elimination, the augmented
coefficient matrix becomes

[«

Because the computer works with a fixed word length, all numbers are rounded off

A | 1 o
b/]= 0 2-1/e —1+1/¢0 d)
0 —-1+4+2/¢ —2/e |1

to a finite number of significant figures. If ¢ is very small, then 1/¢ is huge, and an
element such as 2 — 1/¢ is rounded to —1/¢. Therefore, for sufficiently small ¢, the
Egs. (d) are actually stored as

[«

Because the second and third equations obviously contradict each other, the solution

e -1 1o
b/]: 0 —1/s 1/e |0
0 2/e —2/¢|1

process fails again. This problem would not arise if the first and second, or the first
and the third equations were interchanged in Egs. (c) before the elimination.

The last example illustrates the extreme case where ¢ was so small that roundoff
errors resulted in total failure of the solution. If we were to make ¢ somewhat bigger
so that the solution would not “bomb” any more, the roundoff errors might still be
large enough to render the solution unreliable. Again, this difficulty could be avoided
by pivoting.

Diagonal Dominance

An n x nmatrix A is said to be diagonally dominant if each diagonal element is larger
than the sum of the other elements in the same row (we are talking here about abso-
lute values). Thus diagonal dominance requires that

n
[Aii| > Z |Aij| G=1,2,...,n) (2.30)

j=1
J#i
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For example, the matrix

-2 4 -1
1 -1 3
4 -2 1

is not diagonally dominant, but if we rearrange the rows in the following manner

4 -2 1
-2 4 -1
1 -1 3

then we have diagonal dominance.

It can be shown that if the coefficient matrix A of the equations Ax = b is diago-
nally dominant, then the solution does not benefit from pivoting; that is, the equa-
tions are already arranged in the optimal order. It follows that the strategy of pivoting
should be to reorder the equations so that the coefficient matrix is as close to diagonal
dominance as possible. This is the principle behind scaled row pivoting, discussed
next.

Gauss Elimination with Scaled Row Pivoting

Consider the solution of Ax = b by Gauss elimination with row pivoting. Recall that
pivoting aims at improving diagonal dominance of the coefficient matrix, that is,
making the pivot element as large as possible in comparison to other elements in the
pivot row. The comparison is made easier if we establish an array s, with the elements

s;=max|A;|, i=12,...,n (2.31)
j

Thus s;, called the scale factor of row i, contains the absolute value of the largest ele-
ment in the ith row of A. The vector s can be obtained with the following algorithm:

for i in range(n):

s[i] = max(abs(a[i,0:n]))
The relative size of any element A;; (i.e., relative to the largest element in the ith
row) is defined as the ratio

A
Si

(2.32)

rij =
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Suppose that the elimination phase has reached the stage where the kth row
has become the pivot row. The augmented coefficient matrix at this point is shown

below.
(A1 A Az A - A|b
0 Ay Axp Axn - Aylb
0 0 Aszz Az --- Asy|bs
o - 0 Awe - Agnlbe | <
L0 - 0 Aw - Aunlbn |

We do not automatically accept A as the pivot element, but look in the kth column
below A for a “better” pivot. The best choice is the element A , that has the largest
relative size; that is, we choose p such that

I'pk = MNax rijg
' jzk J

If we find such an element, then we interchange the rows k and p, and proceed with
the elimination pass as usual. Note that the corresponding row interchange must also
be carried out in the scale factor array s. The algorithm that does all this is

for k = 1:n-1
% Find element with largest relative size
% and the corresponding row number p
[Amax,p] = max(abs(A(k:n,k))./s(k:n));
p=p+k-1;
% If this element is very small, matrix is singular
if Amax < eps
error(’Matrix is singular’)
end
% Interchange rows k and p if needed
if p "=k
b = swapRows(b,k,p);
s = swapRows(s,k,p);
A = swapRows(A,k,p);
end

% Elimination pass

end
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B swapRows
The function swapRows interchanges rows i and j of a matrix or vector v:
function v = swapRows(v,i,j)

% Swap rows i and j of vector or matrix v.
% USAGE: v = swapRows(v,i,Jj)

temp = v(i,:);
v(i,:) = v(J,:);
v(j,:) = temp;

B gaussPiv

The function gaussPiv performs Gauss elimination with row pivoting. Apart from
row swapping, the elimination and solution phases are identical to those of function
gauss in Section 2.2.

function x

gaussPiv(A,b)
% Solves A*x = b by Gauss elimination with row pivoting.
% USAGE: x

gaussPiv(A,b)

if size(b,2) > 1; b = b’; end
n = length(b); s = zeros(n,1l);

Fom—mmmmm Set up scale factor array----------
for i = 1:n; s(i) = max(abs(A(i,1:n))); end
Yo————————— Exchange rows if necessary----------

for k = 1:n-1
[Amax,p] = max(abs(A(k:n,k))./s(k:n));
p=p+k-1;
if Amax < eps; error(’Matrix is singular’); end
if p "=k
b

s = swapRows(s,k,p);

swapRows (b, k,p);

A = swapRows(A,k,p);

for i = k+1:n
if A(i,k) "= 0
lambda = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);
b(i) = b(i) - lambda*b(k);
end
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end
end

for k = n:-1:1

b(k) = (b(k) - A(k,k+1:n)*b(k+1:n))/A(k,k);
end
x = b;

B LUdecPiv

The Gauss elimination algorithm can be changed to Doolittle’s decomposition with
minor changes. The most important of these is keeping a record of the row inter-
changes during the decomposition phase. In LUdecPiv this record is kept in the
permutation array perm, initially set to [1, 2, ..., n]T. Whenever two rows are inter-
changed, the corresponding interchange is also carried out in perm. Thus perm shows
how the original rows were permuted. This information is then passed to the function
LUsolPiv, which rearranges the elements of the constant vector in the same order
before carrying out forward and back substitutions.

function [A,perm] = LUdecPiv(A)

% LU decomposition of matrix A; returns A = [L\U]
% and the row permutation vector ’'perm’.

% USAGE: [A,perm] = LUdecPiv(A)

n = size(A,1); s = zeros(n,l);

perm = (1:n)’;

Yom——m—mm - Set up scale factor array----------
for 1 = 1:n; s(i) = max(abs(A(i,1:n))); end
Yo———————— = Exchange rows if necessary----------
for k = 1:n-1

[Amax,p] = max(abs(A(k:n,k))./s(k:n));
p=p+k-1;
if Amax < eps

error(’Matrix is singular’)

end
if p "=k
s = swapRows(s,k,p);
A = swapRows(A,k,p);
perm = swapRows(perm,k,p);
end
%—————————————— Elimination pass-------———————-—-—

for i = k+1:n
if A(i,k) "= 0
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lambda = A(i,k)/A(k,k);
A(i,k+1:n) = A(i,k+1:n) - lambda*A(k,k+1:n);
A(i,k) = lambda;
end
end

end

B LUsolPiv

function x = LUsolPiv(A,b,perm)

% Solves L*U*b = x, where A contains row-wise
% permutation of L and U in the form A = [L\U].
% Vector ’'perm’ holds the row permutation data.
% USAGE: x = LUsolPiv(A,b,perm)

%—————————— Rearrange b, store it in x--------
if size(b) > 1; b = b’; end

n = size(A,1);

x = b;

for i = 1:n; x(i) = b(perm(i)); end

for k = 2:n
x(k) = x(k) - ACk,1:k-1)*x(1:k-1);
end
for k = n:-1:1
x(k) = (x(k) - ACk,k+1:n)*x(k+1:n))/ACk,k);

end

When to Pivot

Pivoting has a couple of drawbacks. One of these is the increased cost of computa-
tion; the other is the destruction of symmetry and banded structure of the coefficient
matrix. The latter is of particular concern in engineering computing, where the co-
efficient matrices are frequently banded and symmetric, a property that is utilized
in the solution, as seen in the previous section. Fortunately, these matrices are often
diagonally dominant as well, so that they would not benefit from pivoting anyway.
There are no infallible rules for determining when pivoting should be used. Ex-
perience indicates that pivoting is likely to be counterproductive if the coefficient
matrix is banded. Positive definite and, to a lesser degree, symmetric matrices also
seldom gain from pivoting. And we should not forget that pivoting is not the only
means of controlling roundoff errors — there is also double precision arithmetic.
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It should be strongly emphasized that the above rules of thumb are only meant
for equations that stem from real engineering problems. It is not difficult to concoct
“textbook” examples that do not conform to these rules.

EXAMPLE 2.12
Employ Gauss elimination with scaled row pivoting to solve the equations Ax = b,

where
2 -2 6 16
A=| -2 4 3 b= 0
-1 8 4 -1

Solution The augmented coefficient matrix and the scale factor array are

2 —2 6|16 6
[A\b]: 2 4 3]0 s=|4
1 8 4]-1 8

Note that s contains the absolute value of the biggest element in each row of A. At this
stage, all the elements in the first column of A are potential pivots. To determine the
best pivot element, we calculate the relative sizes of the elements in the first column:

i [A11] /81 1/3
ro1 | = | |Aa1l/s2 | =] 1/2
r31 |As1| /83 1/8

Since ry; is the biggest element, we conclude that A,; makes the best pivot element.
Therefore, we exchange rows 1 and 2 of the augmented coefficient matrix and the
scale factor array, obtaining

-2 4 3| 0| « 4
[A\b]: 2 —2 6|16 s=|6
1 8 4]-1 8

Now the first pass of Gauss elimination is carried out (the arrow points to the pivot
row), yielding

24 3]0 4
[A’b/]= 02 9|16 s=|6
0 6 5/2|—1 8

The potential pivot elements for the next elimination pass are A;, and Asz,. We
determine the “winner” from

* * *
Foa | = | |A22l/s2 [ =] 1/3
I32 |As2| /3 3/4

Note that ry; is irrelevant, since row 1 already acted as the pivot row. Therefore, it
is excluded from further consideration. As r3;, is bigger than r,,, the third row is the
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better pivot row. After interchanging rows 2 and 3, we have

2 4 3|0 4
[A/b’]: 06 52/—-1|« s=|8
02 9|16 6

The second elimination pass now yields
-2 4 3 0
b”]:[U\c]: 0 6 5/2|-1
0 0 49/6/49/3

8

This completes the elimination phase. It should be noted that U is the matrix
that would result in the LU decomposition of the following row-wise permutation of
A (the ordering of rows is the same as achieved by pivoting):

-2 4 3
-1 8 4
2 -2 6

Since the solution of Ux = ¢ by back substitution is not affected by pivoting, we skip
the details computation. The result is x” = [ 1 -1 2].

Alternate Solution

It it not necessary to physically exchange equations during pivoting. We could ac-
complish Gauss elimination just as well by keeping the equations in place. The elim-
ination would then proceed as follows (for the sake of brevity, we skip repeating the
details of choosing the pivot equation):

2 -2 6|16

[A\b]: 2 4 3 0]«
1 8 4]-1
02 9|16

[A/b’]: 24 3|0

0 6 5/2|-1| «

0 0 49/6/49/3
b”]: 24 3|0
0 6 5/2|-1

*

But now the back substitution phase is a little more involved, since the order in which
the equations must be solved has become scrambled. In hand computations this is
not a problem, because we can determine the order by inspection. Unfortunately,
“by inspection” does not work on a computer. To overcome this difficulty, we have
to maintain an integer array p that keeps track of the row permutations during the
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elimination phase. The contents of p indicate the order in which the pivot rows were
chosen. In this example, we would have at the end of Gauss elimination

2
p=|3
1

showing that row 2 was the pivot row in the first-elimination pass, followed by
row 3 in the second pass. The equations are solved by back substitution in the re-
verse order: equation 1 is solved first for x3;, then equation 3 is solved for x,, and fi-
nally equation 2 yields x;.

By dispensing with swapping of equations, the scheme outlined above would
probably result in a faster (and more complex) algorithm than gaussPivot, but the
number of equations would have to be quite large before the difference becomes
noticeable.

PROBLEM SET 2.2

1. Solve the equations Ax = b by utilizing Doolittle’s decomposition, where

3 -3 3 9
A=| -3 5 1 b=|-7
3 1 12

2. Use Doolittle’s decomposition to solve Ax = b, where

4 8 20 24
A=| 8 13 16 b= 18
20 16 -91 —119

3. Determine L and D that result from Doolittle’s decomposition of the matrix

2 -2 0 0 O

-2 5 -6 0 O

A= 0 -6 16 12 O
0 0 12 39 -6

0 0 0 -6 14

4. Solve the tridiagonal equations Ax = b by Doolittle’s decomposition method,

where
6 2 0 0 0 2
-1 7 2 0 0 -3
A= 0 -2 8 2 0 b= 4
0O 0 3 7 =2 -3
0 0 0 3 5 1
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5. Use Gauss elimination with scaled row pivoting to solve

4 -2 1 X1 2
-2 1 -1 X | =] -1
-2 3 6 X3 0

6. Solve Ax = b by Gauss elimination with scaled row pivoting, where

234 —4.10 1.78 0.02
A=11.98 3.47 =222 b=| -0.73
236 —-15.17 6.81 —6.63

7. Solve the equations

o
|
—
™
|
—
&
o o o~

-1 2 -1 0 X4

by Gauss elimination with scaled row pivoting.
8. M Solve the equations

0 2 5 —-170[x -3
2 1 3 0 X2 _ 3
-2 -1 3 1||x| |-2
3 3 -1 2]||x 5

9. M Solve the symmetric, tridiagonal equations

4X1—.7C2:9
—Xi1+4x— x4 =5 i=2,...,n—1

—Xp1+4x, =5

with n = 10.
10. W Solve the equations Ax = b, where

1.3174 2.7250 2.7250 1.7181 8.4855
A— 0.4002 0.8278 1.2272 2.5322 b— 4.9874
~ 108218 1.5608 0.3629 2.9210 | 5.6665

1.9664 2.0011 0.6532 1.9945 6.6152
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11. H Solve the equations

10 -2 -1 2 3 1 -4 7] x 0
5 11 3 10 -3 3 3 —-4||lx 12
7 12 1 5 3 -12 2 3||x -5
8 7 -2 1 3 2 2 4||x|_ 3
2 =15 -1 1 4 -1 8 3||xs| |-25
4 2 9 1 12 -1 4 11| x —26
-1 4 -7 -1 1 1 -1 -3||x 9

-1 3 4 1 3 -4 7 6||xm| | -7

12. W The system shown in Fig. (a) consists of n linear springs that support n masses.
The spring stiffnesses are denoted by k;, the weights of the masses are W;, and
x; are the displacements of the masses (measured from the positions where the
springs are undeformed). The so-called displacement formulation is obtained by
writing the equilibrium equation of each mass and substituting F; = k;(x;+1 — x;)
for the spring forces. The result is the symmetric, tridiagonal set of equations

(k1 + k) x1 — koxo = W
—kixi1 4+ (ki + ki) — kigqxign =W, i=23,...,n—-1
_knxnfl + knxn = Wn

Write a program that solves these equations for given values of 7, k, and W. Run
the program with n = 5 and

k1=k2=k3=10N/mm k4=k5=5N/mm
W =W =W; =100 N W, =W, =50N

K, ké %9

w |
X,
k3$
3

w) | 1w
%k3xz X2k4
W) | %W l

() (b)

3k
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13. W The displacement formulation for the mass—spring system shown in Fig. (b)
results in the following equilibrium equations of the masses:

ki + ko + ks + ks —ks —ks X1 A
—ks ks+ks —ky X | =] W
_kS _k4 k4 + k5 X3 VVg

where k; are the spring stiffnesses, W, represent the weights of the masses, and
x; are the displacements of the masses from the undeformed configuration of
the system. Write a program that solves these equations, given k and W. Use the
program to find the displacements if

ki=ks=ki=k ky = ks =2k

14. m

24m t

1.8 m

Us

Uy
45 kN

The displacement formulation for a plane truss is similar to that of a mass—spring
system. The differences are (1) the stiffnesses of the members are k; = (EA/L);,
where E is the modulus of elasticity, A represents the cross-sectional area, and
L is the length of the member; (2) there are two components of displacement at
each joint. For the statically indeterminate truss shown, the displacement for-
mulation yields the symmetric equations Ku = p, where

2758 7.004 -7.004 0.0000 0.0000
7.004  29.57 -5.253 0.0000 -—24.32
K=| -7.004 -5253 29.57 0.0000 0.0000 | MN/m
0.0000 0.0000 0.0000 27.58 —-7.004
0.0000 —-24.32 0.0000 —-7.004  29.57

p=[0 00 0 —45]TkN

Determine the displacements u; of the joints.
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15. m

In the force formulation of a truss, the unknowns are the member forces P,. For
the statically determinate truss shown, the equilibrium equations of the joints

are:
(-1 1 —-1//2 o0 ool[A]l [ o]
0 0 1//2 1 0 0| P 18
0 -1 0 0 —1/V2 o||PR| | O
0 0 0 0 1/V2 of|lPR| |12
0 0 0 0 1//2 1|| B 0
. 0 0 0 -1 —1/v2 0P| [ 0]

where the units of P, are kN. (a) Solve the equations as they are with a computer
program. (b) Rearrange the rows and columns so as to obtain a lower triangu-
lar coefficient matrix, and then solve the equations by back substitution using a
calculator.

16. |

The force formulation of the symmetric truss shown results in the joint equilib-
rium equations

c 1 0 00 P 0
0 s 0 01 P, 0
0 0 2s 0 O hBl=]1
0 —¢c ¢c 10 P, 0
0 s s 00 b 0
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where s = sinf, ¢ = cos6, and P, are the unknown forces. Write a program that
computes the forces, given the angle 6. Run the program with 6 = 53°.
17. A

20Q 50

220V

ov
10Q2

The electrical network shown can be viewed as consisting of three loops. Apply-

ing Kirhoff’s law (3 _voltage drops = Y voltage sources) to each loop yields the
following equations for the loop currents i, i, and is:

5i1 + 153 —i3) =220V
R —i3) + 50, +10i, = 0
20i3 + R(i3 — i) + 1533 — 1) =0

Compute the three loop currents for R = 5, 10, and 20 2.
18. m
—120V L ] +120V

5002 30€2

VN ——— VWWWN\—

15Q

AMA
10Q2

AMAA
5Q

25T 200
30

Determine the loop currents #; to iy in the electrical network shown.
19. W Consider the n simultaneous equations Ax = b, where

1002

n—1
Aj=G+j)?* bi=) Ay i=01,...,n-1, j=0,1,...,n-1
j=0
Clearly, the solutionisx=[1 1 ... 1 17. Write a program that solves these

equations for any given n (pivoting is recommended). Run the program with
n =2, 3, and 4 and comment on the results.
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20. m
8 mi/s 3 r_ni'/s 2 r_nj/s

6rlﬁ/s

o el ol ]al]e
- e
2m?s

T ams ™ 5mis 4m¥s !
4md/s 6 m3/s¢ 2md/s

¢ =20 mg/m? ¢ =15 mg/m?

The diagram shows five mixing vessels connected by pipes. Water is pumped
through the pipes at the steady rates shown in the diagram. The incoming
water contains a chemical, the amount of which is specified by its concentration
¢ (mg/m3). Applying the principle of conservation of mass

mass of chemical flowing in = mass of chemical flowing out

to each vessel, we obtain the following simultaneous equations for the concen-
trations ¢; within the vessels

—8c) +4c, = —80
8¢y —10¢, +2¢c3 =0
6¢c; — 11c3+5¢4, =0

3c3 —7¢c4 +4c5 =0

2¢4 —4cs = =30

Note that the mass flow rate of the chemical is obtained by multiplying the vol-
ume flow rate of the water by the concentration. Verify the equations and deter-
mine the concentrations.

21. m

Four mixing tanks are connected by pipes. The fluid in the system is pumped
through the pipes at the rates shown in the figure. The fluid entering the system
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contains a chemical of concentration ¢ as indicated. Determine the concentra-
tion of the chemical in the four tanks, assuming a steady state.

Matrix Inversion
Introduction

Computing the inverse of a matrix and solving simultaneous equations are related
tasks. The most economical way to invert an n x n matrix A is to solve the equations

AX=1 (2.33)

where I is the n x n identity matrix. The solution X, also of size n x n, will be the
inverse of A. The proof is simple: after we premultiply both sides of Eq. (2.33) by A~!
we have A~AX = A~!I, which reduces to X = A™!.

Inversion of large matrices should be avoided whenever possible due to its high
cost. As seen from Eq. (2.33), inversion of A is equivalent to solving Ax;=b;, i=1,
2, ..., n, where b; is the ith column of I. Assuming that LU decomposition is em-
ployed in the solution, the solution phase (forward and back substitution) must be
repeated n times, once for each b;. Since the cost of computation is proportional to
n3 for the decomposition phase and n? for each vector of the solution phase, the cost
of inversion is considerably more expensive than the solution of Ax = b (single con-
stant vector b).

Matrix inversion has another serious drawback — a banded matrix loses its struc-
ture during inversion. In other words, if A is banded or otherwise sparse, then A~! is
fully populated. However, the inverse of a triangular matrix remains triangular.

EXAMPLE 2.13
Write a function that inverts a matrix using LU decomposition with pivoting. Test the

function by inverting
06 —-04 1.0
A=|-03 02 05
06 —-1.0 05

Solution The function matInv listed below inverts any matrix A.

function Ainv = matInv(A)
% Inverts martix A with LU decomposition.
% USAGE: Ainv = matInv(A)

n = size(A,1);
Ainv = eye(n); % Store RHS vectors in Ainv.
[A,perm] = LUdecPiv(A); % Decompose A.

% Solve for each RHS vector and store results in Ainv
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% replacing the corresponding RHS vector.
for i = 1:n

Ainv(:,i) = LUsolPiv(A,Ainv(:,i),perm);
end

The following test program computes the inverse of the given matrix and checks
whether AA™'=I:

% Example 2.13 (Matrix inversion)
A =[0.6 -0.4 1.0
-0.3 0.2 0.5
0.6 -1.0 0.57;
Ainv = matInv(A)
check = A*Ainv

Here are the results:

>> Ainv =
1.6667 -2.2222 -1.1111
1.2500 -0.8333 -1.6667
0.5000 1.0000 0
check =

1.0000 -0.0000 -0.0000
0 1.0000 0.0000
0 -0.0000 1.0000

EXAMPLE 2.14
Invert the matrix

2 -1 0 0 0
-1 2 -1 0 0

0 -1 2 -1 0
0 -1 2 -1
0 0 -1 2 -
0 0 0 -1

o= O O O O

S O O

Solution Since the matrix is tridiagonal, we solve AX = I using the functions LUdec3
and LUso13 (LU decomposition for tridiagonal matrices):

% Example 2.14 (Matrix inversion)
= 6;
ones(n,1)*2;

= -ones(n-1,1);

n o B
]

= e;
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d(n) = 5;
[c,d,e] = LUdec3(c,d,e);
for i = 1:n

b = zeros(n,1);

b(i) = 1;

Ainv(:,i) = LUsol3(c,d,e,b);
end

Ainv

The result is

>> Ainv =
0.8400 0.6800 0.5200 0.3600 0.2000 0.0400
0.6800 1.3600 1.0400 0.7200 0.4000 0.0800
0.5200 1.0400 1.5600 1.0800 0.6000 0.1200
0.3600 0.7200 1.0800 1.4400 0.8000 0.1600
0.2000 0.4000 0.6000 0.8000 1.0000 0.2000
0.0400 0.0800 0.1200 0.1600 0.2000 0.2400

Note that although A is tridiagonal, A~! is fully populated.

Iterative Methods
Introduction

So far, we have discussed only direct methods of solution. The common character-
istic of these methods is that they compute the solution with a fixed number of op-
erations. Moreover, if the computer were capable of infinite precision (no roundoff
errors), the solution would be exact.

Iterative methods or indirect methods start with an initial guess of the solution x
and then repeatedly improve the solution until the change in x becomes negligible.
Since the required number of iterations can be very large, the indirect methods are,
in general, slower than their direct counterparts. However, iterative methods do have
the following advantages that make them attractive for certain problems:

1. It is feasible to store only the nonzero elements of the coefficient matrix. This
makes it possible to deal with very large matrices that are sparse, but not neces-
sarily banded. In many problems, there is no need to store the coefficient matrix
at all.

2. Iterative procedures are self-correcting, meaning that roundoff errors (or even
arithmetic mistakes) in one iterative cycle are corrected in subsequent cycles.
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A serious drawback of iterative methods is that they do not always converge to
the solution. It can be shown that convergence is guaranteed only if the coefficient
matrix is diagonally dominant. The initial guess for x plays no role in determining
whether convergence takes place — if the procedure converges for one starting vector,
it would do so for any starting vector. The initial guess effects only the number of
iterations that are required for convergence.

Gauss—Seidel Method

The equations Ax = b are in scalar notation

n
ZAl]x]:bl’ i:l,z,...,l’l
j=1

Extracting the term containing x; from the summation sign yields

n
Aiixi + ZAijx]' =b, i=12,...,n

j=1

J#i

Solving for x;, we get

1 - .
Xi = — bi—ZAijx]' , l:1,2,...,l’l
Aji s
J#i

The last equation suggests the following iterative scheme

n
XH_A%,- bi—;Aijxj , i=12,...,n (2.34)
J#t

We start by choosing the starting vector x. If a good guess for the solution is not avail-
able, x can be chosen randomly. Equation (2.34) is then used to recompute each ele-
ment of X, always using the latest available values of x;. This completes one iteration
cycle. The procedure is repeated until the changes in x between successive iteration
cycles become sufficiently small.

Convergence of Gauss-Seidel method can be improved by a technique known as
relaxation. The idea is to take the new value of x; as a weighted average of its previous
value and the value predicted by Eq. (2.34). The corresponding iterative formula is

n

w

X — | b — Ajix; l—-wx, i=1,2,...,n 2.35

l<_Aii i ;l]] + ( ) X; ( )
J#i

where the weight o is called the relaxation factor. It can be seen that if w =1,

no relaxation takes place, since Eqgs. (2.34) and (2.35) produce the same result. If
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o < 1, Eq. (2.35) represents interpolation between the old x; and the value given by
Eq. (2.34). This is called under-relaxation. In cases where » > 1, we have extrapola-
tion, or over-relaxation.

There is no practical method of determining the optimal value of w beforehand;
however, a good estimate can be computed during run time. Let Ax®) = [x*=1 — x(®

be the magnitude of the change in x during the kth iteration (carried out without
relaxation, i.e., with v = 1). If k is sufficiently large (say, k > 5), it can be shown? that
an approximation of the optimal value of w is
2
Wopt ~ (2.36)
1+ \/1 — (Axtktp /AxKh) /P

where pis a positive integer.
The essential elements of a Gauss-Seidel algorithm with relaxation are:

1. Carry out k iterations with @ = 1 (k = 10 is reasonable). After the kth iteration
record Ax™®,

2. Perform an additional p iterations ( p > 1), and record Ax*+P) after the last
iteration.

3. Perform all subsequent iterations with @ = wep, Where wp is computed from
Eq. (2.36).

B gaussSeidel

The function gaussSeidel is an implementation of the Gauss—Seidel method with
relaxation. It automatically computes wqp; from Eq. (2.36) using k = 10 and p = 1.
The user must provide the function func that computes the improved x from the
iterative formulas in Eq. (2.35) — see Example 2.17.

function [x,numIter,omega] = gaussSeidel(func,x,maxIter,epsilon)

% Solves Ax = b by Gauss-Seidel method with relaxation.

% USAGE: [x,numlIter,omega] = gaussSeidel(func,x,maxIter,epsilon)
% INPUT:

% func = handle of function that returns improved x using

% the iterative formulas in Eq. (3.37).

% x = starting solution vector

% maxIter = allowable number of iterations (default is 500)
% epsilon = error tolerance (default is 1.0e-9)
% OUTPUT:

% x = solution vector

2 See, for example, Terrence, J. Akai, Applied Numerical Methods for Engineers, John Wiley & Sons,
New York, 1994, p. 100.
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% numlter number of iterations carried out

% omega

computed relaxation factor

if nargin < 4; epsilon = 1.0e-9; end
if nargin < 3; maxIter = 500; end
k = 10; p = 1; omega = 1;
for numIter = l:maxIter
x01ld = x;

x = feval(func,x,omega);
dx = sqrt(dot(x - x01ld,x - x01d));
if dx < epsilon; return; end
if numIter == k; dxl1 = dx; end
if numIter == k + p
omega = 2/(1 + sqrt(l - (dx/dx1)"(1/p)));
end
end

error(’Too many iterations’)

Conjugate Gradient Method
Consider the problem of finding the vector x that minimizes the scalar function
fx) = %XTAX - b'x (2.37)

where the matrix A is symmetric and positive definite. Because f(x) is minimized
when its gradient Vf = Ax — b is zero, we see that minimization is equivalent to
solving

Ax=Db (2.38)

Gradient methods accomplish the minimization by iteration, starting with an
initial vector x¢. Each iterative cycle k computes a refined solution

Xjp1 = X + ok Sk (2.39)

The step length o} is chosen so that Xy, ; minimizes f(X;;) in the search direction sy.
That is, x;,; must satisfy Eq. (2.38):

AXy +agsi) =b (a)
Introducing the residual
r. = b — Ax; (2.40)
Eq. (a) becomes aAs; = ri. Premultiplying both sides by s/ and solving for ay, we
obtain
s'ry
= Tk (2.41)
S Asi

We are still left with the problem of determining the search direction s;. Intuition
tells us to choose sy = —V f = ry, since this is the direction of the largest negative
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change in f(x). The resulting procedure is known as the method of steepest descent.
It is not a popular algorithm due to slow convergence. The more efficient conjugate
gradient method uses the search direction

Sk+1 = Try1 + BiSk (2.42)
The constant g is chosen so that the two successive search directions are conju-
gate (noninterfering) to each other, meaning s;. 1Ask = 0. Substituting for sy, from
Eq. (2.42), we get (i, , + Bis[) As; = 0, which yields

T
_ I 1 ASk

Br = (2.43)

sTAs;
Here is the outline of the conjugate gradient algorithm:

e Choose x, (any vector will do, but one close to solution results in fewer iterations)

e Iy < b— AX()

e sy < r¢ (lacking a previous search direction, choose the direction of steepest
descent)

e dowithk=0,1,2,...

T
S Ik

O <
sTAs;

Xk+1 < Xk + oSk
Iy < b—Axp

if |ri11| < ¢ exit loop (convergence criterion; ¢ is the error tolerance)
T
r, . As;
k+1
ﬁk «— ——

s7Asy

Sk+1 < Tig1 + BrSk

e enddo

It can be shown that the residual vectors ry, r,, r3, . . ., produced by the algorithm
are mutually orthogonal; thatis, r; - r; = 0, i # j. Now suppose that we have carried
out enough iterations to have computed the whole set of n residual vectors. The resid-
ual resulting from the next iteration must be a null vector (r;,; = 0), indicating that
the solution has been obtained. It thus appears that the conjugate gradient algorithm
is not an iterative method at all, since it reaches the exact solution after n compu-
tational cycles. In practice, however, convergence is usually achieved in less than n
iterations.

Conjugate gradient method is not competitive with direct methods in the solu-
tion of small sets of equations. Its strength lies in the handling of large, sparse systems
(where most elements of A are zero). It is important to note that A enters the algo-
rithm only through its multiplication by a vector; that is, in the form Av, where v is a
vector (either x;; or sg). If A is sparse, it is possible to write an efficient subroutine
for the multiplication and pass it on to the conjugate gradient algorithm.
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B conjGrad

The function conjGrad shown below implements the conjugate gradient algorithm.
The maximum allowable number of iterations is set to 7. Note that conjGrad calls
the function Av(v)which returns the product Av. This function must be supplied
by the user (see Example 2.18). We must also supply the starting vector x and the
constant (right-hand side) vector b.

function [x,

% Solves Ax

% USAGE: [x,

% INPUT:

% func =
% X =
% b =
% epsilon =
% OUTPUT:

% X =

% numlter =

numIter] = conjGrad(func,x,b,epsilon)
= b by conjugate gradient method.
numIter] = conjGrad(func,x,b,epsilon)

handle of function that returns the vector A*v
starting solution vector
constant vector in A*x = b

error tolerance (default = 1.0e-9)

solution vector

number of iterations carried out

if nargin == 3; epsilon = 1.0e-9; end
n = length(b);
r = b - feval(func,x); s = r;

for numlIter

= 1:n

u = feval(func,s);

alpha =
X = X +
r=">b -

dot(s,r)/dot(s,u);
alpha*s;
feval (func,x);

if sgrt(dot(r,r)) < epsilon

return

else

beta = -dot(r,u)/dot(s,u);

S =
end

end

r + beta*s;

error(’Too many iterations’)

EXAMPLE 2.15

Solve the equations

4 -1 1 X1 12
-1 4 -2 X | =] —1
1 -2 4 X3 5

by the Gauss-Seidel method without relaxation.
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Solution With the given data, the iteration formulas in Eq. (2.34) become

1
x1=1(12+x2—x3)

1
=7 (=14 x1 4+ 2x3)

1
X3 = 1(5—X1+2X2)

Choosing the starting values x; = x, = x3 = 0, the first iteration gives us

1
x1=2(12+0—0)=3
1
Xp = Z[_l+3+2(0)] =0.5
1
X3 = 1 [6—-342(0.5)]=0.75

The second iteration yields

1
X = 1 (12+0.5-0.75) = 2.9375
1
X = 1 [-1+2.9375 4 2(0.75)] = 0.859 38

1
X3 = 1 [5 —2.9375 + 2(0.85938)] = 0.94531

and the third iteration results in

1
X1 = 1 (12 + 0.85938 — 0.94531) = 2.97852
1
Xy = 1 [—1+2.97852 4 2(0.94531)] = 0.967 29

1
X3 = 1 [6—2.97852 4 2(0.96729)] = 0.989 02

After five more iterations the results would agree with the exact solution x; = 3,
X; = x3 = 1 within five decimal places.

EXAMPLE 2.16
Solve the equations in Example 2.15 by the conjugate gradient method.

Solution The conjugate gradient method should converge after three iterations.
Choosing again for the starting vector

xo=[0 0 0]7

the computations outlined in the text proceed as follows:

12 4 -1 1 0 12
rn=b—-Axo=| -1 |- -1 4 -2 0]=1|-1
5 1 -2 4 0 5
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12
So =TIy = -1
5
4 -1 1] 12 54
Asp=| -1 4 —2||-1]|=]|-26
1 -2 4| 5 34
r 122 4+ (—=1)%2 4+ 52
P L + D7+ —0.20142
slAsy  12(54) + (—1)(—26) + 5(34)
[0 12 2.41704
X] =Xo+agSg=| 0 |+020142| —1 | = | —0.20142
0 5 1.007 10
12 4 -1 1 2.41704 1.12332
rn=b-Ax;=|-1|-| -1 4 —2||-0.20142|=| 4.23692
5 1 -2 4 1.007 10 —1.84828
r’As 1.12332(54) + 4.23692(—26) — 1.848 28(34
Bo=——2 = — 54) + (29 BY _ 0133107
sl Asg 12(54) + (—1)(—26) + 5(34)
1.12332 ]| 12 2.72076
S1 =11+ fB¢So=| 423692 |+40.133107| -1 | =| 4.10380
—1.84828 | 5 —~1.18268
4 -1 1] 272076 5.596 56
As;=| -1 4 —2 410380 | = | 16.05980
1 -2 4]|[-118268 —~10.21760
. — sir
' sTAs,

2.72076(1.12332) +4.103 80(4.23692) + (—1.18268)(—1.848 28)

= 2.72076(5.596 56) + 4.103 80(16.059 80) + (—1.182 68)(—10.217 60)

= 0.24276
2.41704 2.72076 3.07753 ]
X> =X; +a8; = | —0.20142 | +0.24276 | 4.10380 | = | 0.79482
1.007 10 ~1.18268 0.71999 |
12 4 -1 17[3.07753 ~0.23529 ]
n=b-Ax,=|-1|-| -1 4 —2|]| 079482 | =| 0.33823
5 1 -2 4]]0.71999 0.63215 |
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rIAs;
B =—%
S| As;
_ (~0.23529)(5.59656) + 0.33823(16.05980) + 0.63215(—10.21760)
= T 2.72076(5.59656) + 4.10380(16.05980) + (—1.18268)(—10.21760)
= 0.0251452
—0.23529 2.72076 —0.166876
S =TI+ B181 = 0.33823 | +0.0251452 4.10380 | = 0.441421
0.63215 —1.18268 0.602411
4 -1 17[-0.166876 —0.506514
As, = | —1 4 -2 0.441421 | = 0.727738
1 -2 4 0.602411 1.359930
v — rls,
- s1As,
_ (~0.23529)(—0.166876) + 0.33823(0.441421) + 0.63215(0.602411)
= (20.166876)(—0.506514) + 0.441421(0.727738) + 0.602411(1.359930)
— 0.46480
3.07753 —0.166876 2.99997
X3 =Xy + @282 = | 0.79482 | + 0.46480 0.441421 | = | 0.99999
0.71999 0.602411 0.99999

The solution x3 is correct to almost five decimal places. The small discrepancy is
caused by roundoff errors in the computations.

EXAMPLE 2.17
Write a computer program to solve the following n simultaneous equations® by the
Gauss-Seidel method with relaxation (the program should work with any value of n):

2 -1 0 0o ... 0 0 0 1] [ x 7 0]
-1 2 -1 0o ... 0 0 0 0 X2 0
0 -1 2 -1 ... 0 0 0 0 X3 0
0 0 0 o ... -1 2 -1 0 Xn—2 0
0 0 0 0o ... 0 -1 2 -1 Xn—1 0
.1 0 0 0 .. 0 0 -1 2| x | |1
Run the program with n = 20. The exact solution can be shown to be x; = —n/4 +i/2,
i=12,...,n.

3 Equations of this form are called cyclic tridiagonal. They occur in the finite difference formulation
of second-order differential equations with periodic boundary conditions.
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Solution In this case the iterative formulas in Eq. (2.35) are
X1 =0 —x)/2+ (1 - o)X
Xi=wX_1+X:1)/24+(1—-wx, i=2,3,...,n—1 (a)
Xp=w(l—x1+x,-1)/24+ (1 — 0)x,

which are evaluated by the following function:

function x = fex2_17(x,omega)

% Iteration formula Eq. (2.35) for Example 2.17.

n = length(x);
x(1l) = omega*(x(2) - x(n))/2 + (l-omega)*x(1l);
for i = 2:n-1
x(1i) = omega*(x(i-1) + x(i+1))/2 + (l-omega)*x(i);
end
x(n) = omega *(1 - x(1) + x(n-1))/2 + (l-omega)*x(n);

The solution can be obtained with a single command (note that the x = 0 is the
starting vector):

>> [x,numIter,omega] = gaussSeidel(@fex2_17,zeros(20,1))

resulting in

-4.5000
-4.0000
-3.5000
-3.0000
-2.5000
-2.0000
-1.5000
-1.0000
-0.5000

0.0000
.5000
.0000
.5000
.0000
.5000
.0000
.5000

W w NN R RO
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4.0000
4.5000
5.0000
numIter =
259
omega =
1.7055

The convergence is very slow because the coefficient matrix lacks diagonal dom-
inance - substituting the elements of A in Eq. (2.30) produces an equality rather than
the desired inequality. If we were to change each diagonal term of the coefficient from
2 to 4, A would be diagonally dominant and the solution would converge in only 22
iterations.

EXAMPLE 2.18
Solve Example 2.17 with the conjugate gradient method, also using n = 20.

Solution For the given A, the components of the vector Av are
(Av); =201 — V2 + Uy

AV); = -1 + 20— Vi1, 1=2,3,...,n—1

AV), = —Up_1 + 20, + 11

which are evaluated by the following function:

function Av = fex2_18(v)

% Computes the product A*v in Example 2.18

n = length(v);

Av = zeros(n,1l);

Av(l) = 2*v(1l) - v(2) + v(n);

Av(2:n-1) = -v(1l:n-2) + 2*v(2:n-1) - v(3:n);
Av(n) = -v(n-1) + 2*v(n) + v(1l);

The program shown below utilizes the function conjGrad. The solution vector x
is initialized to zero in the program, which also sets up the constant vector b.

% Example 2.18 (Conjugate gradient method)
n = 20;

x = zeros(n,1);

b = zeros(n,1); b(n) = 1;

[x,numIter] = conjGrad(@fex2_18,x,b)

Running the program results in
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5.
numIlte
10

PROBLEM SET 2.3

.5000
.0000
.5000
.0000
.5000
.0000
.5000
.0000
.5000

0

.5000
.0000
.5000
.0000
.5000
.0000
.5000
.0000
.5000

0000

Tr =

1. Let

A=

3
0
-2

-1

2

—4

e b (55ke annd - e 3590l - I e ol

(note that B is obtained by interchanging the first two rows of A). Knowing that

determine B—1.

Al =

2. Invert the triangular matrices

S o N

S O

0.5 0
03 04

—-0.1 0.2

N O W

0.25
0.45
—0.15

=W N

g~ O

o O O
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3. Invert the triangular matrix
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1 1/2 1/4 1/8
Ao 0 1 1/3 1/9
0 0 1 1/4
0 0 0 1
4. Invert the following matrices:
1 2 4 4 -1 0
@A=|1 3 9 b)B=| -1 4 -1
1 4 16 0 -1 4
5. Invert the matrix
4 -2 1
A= -2 1 -1
1 -2 4
6. M Invert the following matrices with any method
5 -3 -1 0 4 -1 0 0
A— —2 1 1 1 B— -1 4 -1 0
3 -5 1 2 0 -1 4 -1
0 8§ -4 -3 0 0 -1 4
7. W Invert the matrix by any method
1 3 -9 6 4
2 -1 6 7 1
A= 3 2 -3 15 5
8 -1 1 4 2
11 1 -2 18 7
and comment on the reliability of the result.
8. W The joint displacements u of the plane truss in Problem 14, Problem Set 2.2,

are related to the applied joint forces p by

where
27.580 7.004 -7.004 0.000 0.000
7.004 29.570 —5.253 0.000 —24.320
K=| -7.004 —-5.253 29.570 0.000 0.000 | MN/m
0.000 0.000 0.000 27580 —7.004
0.000 —24.320 0.000 —-7.004 29.570

is called the stiffness matrix of the truss. If Eq. (a) is inverted by multiplying each
side by K~!, we obtain u = K~'p, where K~! is known as the flexibility matrix.
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10.

11.

12.

13.

14.
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The physical meaning of the elements of the flexibility matrix is K;; ! = displace-
ments u; (i =1, 2, ..., 5) produced by the unitload p; = 1. Compute (a) the flex-

ibility matrix of the truss; (b) the displacement

s of the joints due to the load

ps = —45 kN (the load shown in Problem 14, Problem Set 2.2).

M Invert the matrices

3 =7 45 21

A— 12 11 10 17 B
6 25 —-80 -—-24
17 55 -9 7

BN
QW N =
[op It~ NS
N s NN o=

B Write a program for inverting an n x n lower triangular matrix. The inversion

procedure should contain only forward substitution. Test the program by invert-

ing the matrix

36 0 0 O

A— 18 36 0 O
9 12 36 O

5 4 9 36

Let the program also check the result by computi
Use the Gauss—Seidel method to solve

ng and printing AA~".

-2 5 9|[x !

7 1 1 X | = 6

-3 7 -1||x| |-26

Solve the following equations with the Gauss-Seidel method:

12 -2 3 1|[x] 0
-2 15 6 3||x|_| o

1 6 20 —4||x| |20

0 -3 2 9| x| 0

Use the Gauss-Seidel method with relaxation to solve Ax = b, where

4 -1 0 0
A— -1 4 -1 0
0 -1 4 -1
0o 0 -1 3

Take x; = b;/A;; as the starting vector and use w = 1.1 for the relaxation factor.

Solve the equations

2 -1 0 X1
-1 2 -1 X
0 -1 1 X3

by the conjugate gradient method. Start withx =

0.
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15. Use the conjugate gradient method to solve

3 0 -1 X1 4
0 4 -2 X | = 10
-1 -2 5 X3 —-10

starting withx = 0.
16. W Solve the simultaneous equations Ax = b and Bx = b by the Gauss-Seidel
method with relaxation, where

b=[1o 8 10 10 -8 10]T

3 —2 1 0 0 0

2 4 -2 1 0 0

A_| 1 72 4 -2 1 0
0 1 -2 4 -2 1

0 0 1 —2 4 -2

| 0 0 1 -2 3
3 -2 1 0 0 1]

2 4 -2 1 0

g_| 1 -2 4 -2 1 0
0 1 -2 4 -2 1

0 0 1 -2 4 -2

.1 0 o0 1 -2 3]

Note that A is not diagonally dominant, but that does not necessarily preclude
convergence.

17. W Modify the program in Example 2.17 (Gauss—Seidel method) so that it will solve
the following equations:

4 -1 0 0 -- 0 0 0 17 x 0
-1 4 -1 0 -- 0 0 0 0|| x 0
0 -1 4 -1 - 0 0 0 0| x 0
0 0 0 0 -~ -1 4 -1 0]/ x 0
0 0 0 0 -+ 0 -1 4 —1||xy 0

.1 0 0o 0 .- 0 0 -1 4| x, | [100]

Run the program with n = 20 and compare the number of iterations with Exam-
ple 2.17.

18. B Modify the program in Example 2.18 to solve the equations in Problem 17 by
the conjugate gradient method. Run the program with n = 20.
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19. &
T=0"
1 2 3
T=0| -4 95 6 T=100
7 8 9
T=200

The edges of the square plate are kept at the temperatures shown. Assuming
steady-state heat conduction, the differential equation governing the tempera-
ture T in the interior is

2T 9T

a2 T =0

If this equation is approximated by finite differences using the mesh shown, we
obtain the following algebraic equations for temperatures at the mesh points:

—4 1 0 1 0 o o o o][n 0
1 -4 1 0 1 0 0 0 0||lB 0
0 1 -4 0 0 1 0 0 O0||B 100
1 0 0 -4 1 0 1 0 ofln 0
0o 1 0 1 -4 1 0 1 O0||B|=| o
0 0 1 0 1 -4 0 0 1[|% 100
0o 0 0 1 0 0 -4 1 O0f|F 200
0o 0 0 0 1 1 -4 1||% 200

L0 0 0 0 0 1 0 1 —4||T%| [300]

Solve these equations with the conjugate gradient method.
20. m

2 kN/m 3 kN/m 3 kN/m 3 kN/m 3 kN/m 2 kN/m
W 8ON 60N

1 2 3 4 5
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Systems of Linear Algebraic Equations

The equilibrium equations of the blocks in the spring-block system are
3(x — x1) —2x3 = —80
33 — %) —3(x2 —x1) =0
3(xs —x3) = 3(x3 —x) =0
3(x5 — x4) — 3(x4 — x3) = 60
—2Xx5 —3(x5 —x4) =0

where x; are the horizontal displacements of the blocks measured in mm. (a)
Write a program that solves these equations by the Gauss-Seidel method without
relaxation. Start with x = 0 and iterate until four-figure accuracy after the deci-
mal point is achieved. Also, print the number of iterations required. (b) Solve the
equations using the function gaussSeidel using the same convergence crite-
rion as in Part (a). Compare the number of iterations in Parts (a) and (b).

21. W Solve the equations in Problem 20 with the conjugate gradient method utiliz-
ing the function conjGrad. Start with x = 0 and iterate until four-figure accuracy
after the decimal point is achieved.

MATLAB Functions

x = A\b returns the solution x of Ax = b, obtained by Gauss elimination. If the
equations are overdetermined (A has more rows than columns), the least-
squares solution is computed.

[L,U] = 1lu(A) Doolittle’s decomposition A = LU. On return, U is an upper trian-
gular matrix and L contains a row-wise permutation of the lower triangular
matrix.

[M,U,P] = lu(A) returns the same U as above, but now M is a lower triangu-
lar matrix and P is the permutation matrix so that M = P*L. Note that here

P*A = M*U.
L = chol(A) Choleski’s decomposition A = LL”.
B = inv(A) returns B as the inverse of A (the method used is not specified).

n = norm(A)returns the largest singular value of matrix A (singular value decom-
position of matrices is not covered in this text).

n = norm(A,inf) returns the infinity norm of matrix A (largest sum of elements
in arow of A).

n

= cond(A) returns the condition number of the matrix A (probably based on the
largest singular value of A).

MATLAB does not cater for banded matrices explicitly. However, banded matri-
ces can be treated as a sparse matrices for which MATLAB provides extensive support.
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A banded matrix in sparse form can be created by the following command:

spdiags(B,d,n,n) creates an n x nsparse matrix from the columns of matrix
B by placing the columns along the diagonals specified by d. The columns of B
may be longer than the diagonals they represent. A diagonal in the upper part
of A takes its elements from lower part of a column of B, while a lower diagonal

Here is an example of creating the 5 x 5 tridiagonal matrix

-1
2
-1
0
0

0
-1
2
-1
0

-1

-1

A =
uses the upper part of B.
2
-1
A= 0
0
0
>> ¢ = ones(5,1);
>> A = spdiags([-c 2*c -c],[-1 0 1],5,5)
A =
(1,1 2
2,1 -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1
(3,4 -1
(4,9 2
(5,49 -1
(4,5 -1
(5,5) 2

If matrix is declared sparse, MATLAB stores only the nonzero elements of the
matrix together with information locating the position of each element in the matrix.
The printout of a sparse matrix displays the values of these elements and their indices

(row and column numbers) in parenthesis.

Almost all matrix functions, including the ones listed above, also work on sparse

matrices. For example, [L,U] = 1u(A) would return L and U in sparse matrix repre-
sentation if A is a sparse matrix. There are many sparse matrix functions in MATLAB;
here are just a few of them:

A =
S =

X

spy (S) draws a map of the nonzero elements of S *.

full(S) converts the sparse matrix S into a full matrix A.

sparse (A) converts the full matrix A into a sparse matrix S.

1sqr(A,b) conjugate gradient method for solving Ax = b.
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Given the n data points (x;, y3), i = 1, 2, ..., n, estimate y(x).

Introduction

Discrete data sets, or tables of the form

X1

X2

X3

Xn

N

Y2

V3

Nz

are commonly involved in technical calculations. The source of the data may be ex-
perimental observations or numerical computations. There is a distinction between
interpolation and curve fitting. In interpolation, we construct a curve through the
data points. In doing so, we make the implicit assumption that the data points are
accurate and distinct. Curve fitting is applied to data that contains scatter (noise),

usually due to measurement errors. Here we want to find a smooth curve that approx-

imates the data in some sense. Thus the curve does not have to hit the data points.

This difference between interpolation and curve fitting is illustrated in Fig. 3.1.

Polynomial Interpolation

Lagrange’s Method

The simplest form of an interpolant is a polynomial. It is always possible to con-

struct a unique polynomial P,_;(x) of degree n — 1 that passes through n distinct
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3.2 Polynomial Interpolation

y

Curve fitting =
-
I nte I’p0|atlon _ - Figure 3.1. Interpolation and curve fit-
ting of data.
-
~ .
pa Data points
L
X

data points. One means of obtaining this polynomial is the formula of Lagrange

n
L) =) yitix) (3.1a)
i=1
where
Ei(x) _ X —X1 ) X — X2 X — Xi—1 ) X — Xjt1 X — Xpn
Xi—X1 Xi— X2 Xi — Xi—1  Xi — Xi+1 Xi — Xn
X — X;
_]_[ L i=1,2...,n (3.1b)
i1 DX — x]
T
are called the cardinal functions.
For example, if n =2, the interpolant is the straight line P (x) = y1¢;(x) +

¥2£2(x), where
X — X1

X2 — X1

X — X;
0(x) = 2 b=
X1 — X2
With n = 3, interpolation is parabolic: P,(x) = y1¢1(x) + y2£2(x) + y3£3(x), where now

(X — x2)(x — x3)

z =

1(x) (X1 — x2) (X1 — x3)

() = (x — x)(x — x3)
(x2 — x1) (X2 — x3)

(x —x1)(x — x2)
Z =
3(%) (X3 — x1) (X3 — X2)

The cardinal functions are polynomials of degree n — 1 and have the property

0ifi 7 j} =5 (3.2)

where §;; is the Kronecker delta. This property is illustrated in Fig. 3.2 for three-point

interpolation (n = 3) with x; = 0, x; = 2,and x3 = 3
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0.50

-0.50
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Figure 3.2. Example of quadratic cardinal functions.

To prove that the interpolating polynomial passes through the data points, we
substitute x = x; into Eq. (3.1a) and then utilize Eq. (3.2). The result is

n n
Pn—l(x]') = Zylgl(x]) = ZylSU =Yj

i=1 i=1

It can be shown that the error in polynomial interpolation is

(x—x)(x —x2) -+ (x — x) f{n)(g)

fx) = Ppo(x) = p

(3.3)

where ¢ lies somewhere in the interval (x;, x,,); its value is otherwise unknown. It is
instructive to note that the further data point is from x, the more it contributes to the
error at x.

Newton’s Method

Evaluation of Polynomial

Although Lagrange’s method is conceptually simple, it does not lend itself to an
efficient algorithm. A better computational procedure is obtained with Newton’s
method, where the interpolating polynomial is written in the form

Pioix)=a1+x—x)ax+ x—x))x—x)az+---+ (x—x)(x—x2) - - (x — Xp_1)an

This polynomial lends itself to an efficient evaluation procedure. Consider, for
example, four data points (n = 3). Here the interpolating polynomial is

B(x) = a1+ (x — x1)az + (x — x1)(x — X2)az + (X — x1) (x — %) (X — x3)a4

=a1+ (x — x)){az + (x — x2) [az + (x — x3)a4]}
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which can be evaluated backwards with the following recurrence relations:

B(x) =ay
Pl(x) =das3 + (x — X3)P()(X)
P(x) =az + (x — x) P (x)

Py(x) = ar + (x — x1) P,(x)
For arbitrary n we have

Py(x) = ay Px)=an-xr+x—Xpp) B (x), k=1,2,...,n—-1 3.4

B newtonPoly

Denoting the x-coordinate array of the data points by xData, and the number of data
points by n, we have the following algorithm for computing P, (x):

function p = newtonPoly(a,xData,x)

% Returns value of Newton’s polynomial at x.

% USAGE: p = newtonPoly(a,xData,x)

% a = coefficient array of the polynomial;
% must be computed first by newtonCoeff.
% xData = x-coordinates of data points.

n = length(xData);
p = a(n);
for k = 1:n-1;
p = a(n-k) + (x - xData(n-k))*p;

end

Computation of Coefficients
The coefficients of P,_;(x) are determined by forcing the polynomial to pass
through each data point: y; = P,_1(x;), i=1,2,...,n. This yields the simultaneous
equations

h=a

Vo =a1+ (X2 — x1)az

Vo =ay+ (x3 — x1)az + (x3 — x1) (x5 — X2)as (a)

Yn=a1+ Xy —x)ar + -+ (Xp — X1) (X — X2) -+ (X — Xp—1)an
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Introducing the divided differences

Vyi =
szi =
V3yl‘ =
V' =
the solution of Egs. (a) is
a,=n a =

Yi—n
Xi—x1

Vyi - Vyz

i:

)

Xi — X2

V2yi—Viys

’

Xi — X3

2,3,...

i=3,4,...

i=4,

anlyn _ anlyn_l

Xn — Xn-1

Vyg

az =

V2ys

e b (55kw annd - e 3590l - I e ol

, N
)
5...n (3.5)
an = V", (3.6)

If the coefficients are computed by hand, it is convenient to work with the format in
Table 3.1 (shown for n = 5).

X1 || N

X2 || Y2 | V)2

x| 3| Vs | VPys

Xs | va | Vya | Vs | Vi

x5 || ¥5 | Vs | VEys | VPys | Viys
Table 3.1

The diagonal terms (y;, Vy», VZy3, V3y,, and V*ys) in the table are the coeffi-
cients of the polynomial. If the data points are listed in a different order, the entries
in the table will change, but the resultant polynomial will be the same - recall that a
polynomial of degree n — 1 interpolating n distinct data points is unique.

B newtonCoeff

Machine computations are best carried out within a one-dimensional array a em-

ploying the following algorithm:

function a = newtonCoeff(xData,yData)

%
%
%
%

Returns coefficients of Newton’s polynomial.
USAGE: a = newtonCoeff(xData,yData)

xData = x-coordinates of data points.

yData = y-coordinates of data points.

length(xData) ;

yData;
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for k = 2:n
a(k:n) = (a(k:n) - a(k-1))./(xData(k:n) - xData(k-1));
end

Initially, a contains the y values of the data, so that it is identical to the second
column in Table 3.1. Each pass through the for-loop generates the entries in the next
column, which overwrite the corresponding elements of a. Therefore, a ends up con-
taining the diagonal terms of Table 3.1; that is, the coefficients of the polynomial.

Neville’s Method

Newton’s method of interpolation involves two steps: computation of the coeffi-
cients, followed by evaluation of the polynomial. This works well if the interpolation
is carried out repeatedly at different values of x using the same polynomial. If only
one point is to be interpolated, a method that computes the interpolant in a single
step, such as Neville’s algorithm, is a better choice.

Let P[x;, Xit1, - - ., Xi+x] denote the polynomial of degree k that passes through
the k + 1 data points (x;, y1), (Xi+1, Yi+1), - - -» (Xi+k, Vi+k). For a single data point, we
have

Pxl =y (3.7

The interpolant based on two data points is

(x — xi41) Polxi] + (x; — x) Pyl xi11]
Xi — Xiy1

Py [x;, Xia] =

It is easily verified that Pi[x;, x;;1] passes through the two data points; that is,
Py[x;, Xi11] = y; when x = x;, and Py [x;, Xi+1] = Yip1 when x = Xi41.
The three-point interpolant is

(x — Xiy2) P %, Xipa] + (6 — %) Py [Xig1, Xigo2l
Xi — Xiy2

P [x;, Xig1, Xigo] =

To show that this interpolant does intersect the data points, we first substitute x = x;,
obtaining

Po(x;, Xiy1, Xiv2] = Pilxi, Xip1] = yi
Similarly, x = x;4» yields
Po(x;, Xit1, Xiz2] = PolXip1, Xig2] = Yigo
Finally, when x = x;,; we have

Pi[x;, Xip1] = PilXi1, Xige] = Vi
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so that

(Xip1 — Xip2) Viyr + (X — Xip1) Vi
Po[xi, Xit1, Xit2]l = = Yin1
Xi — Xi+2

Having established the pattern, we can now deduce the general recursive for-
mula:
Pelxiy Xi1, - o5 Xigk] (3.8)

(X — Xipk) P [, Xig1s - -5 Xigpk—1] + (6 — X) P [Xig1, Xig, -« o5 Xigk]
Xi — Xitk

Given the value of x, the computations can be carried out in the following tabular
format (shown for four data points):

k=0 k=1 k=2 k=3

x1 || Blal =y | Plx, xo] | Polx1, X2, x3] | Ps[x1, X2, X3, X4]

Pi[xp, x3] | Polxo X3, X4]

[x1]

X || Blxe] =
[x3]
[x4]

)2
X3 || Polxs]l = ys | Pilxs, x4l
Xy || Polxs]l = ya

Table 3.2

W neville

This algorithm works with the one-dimensional array y, which initially contains the
y values of the data (the second column in Table 3.2). Each pass through the for-
loop computes the terms in next column of the table, which overwrite the previous
elements of y. At the end of the procedure, y contains the diagonal terms of the table.
The value of the interpolant (evaluated at x) that passes through all the data points is
1, the first element of y.

function yInterp = neville(xData,yData,x)

% Neville’s polynomial interpolation;

% returns the value of the interpolant at x.
% USAGE: yInterp = neville(xData,yData,x)

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

]
1

length(xData) ;
y = yData;
for k = 1:n-1
y(1l:n-k) = ((x - xData(k+1l:n)).*y(l:n-k)...
+ (xData(l:n-k) - x).*y(2:n-k+1))...
./(xData(l:n-k) - xData(k+1l:n));
end

yInterp = y(1);
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Figure 3.3. Polynomial interpolant displaying oscillations.

Limitations of Polynomial Interpolation

Polynomial interpolation should be carried out with the fewest feasible number of
data points. Linear interpolation, using the nearest two points, is often sufficient
if the data points are closely spaced. Three to six nearest-neighbor points produce
good results in most cases. An interpolant intersecting more than six points must be
viewed with suspicion. The reason is that the data points that are far from the point
of interest do not contribute to the accuracy of the interpolant. In fact, they can be
detrimental.

The danger of using too many points is illustrated in Fig. 3.3. There are 11 equally
spaced data points represented by the circles. The solid line is the interpolant, a poly-
nomial of degree ten, that intersects all the points. As seen in the figure, a polynomial
of such a high degree has a tendency to oscillate excessively between the data points.
A much smoother result would be obtained by using a cubic interpolant spanning
four nearest-neighbor points.

Polynomial extrapolation (interpolating outside the range of data points) is dan-
gerous. As an example, consider Fig. 3.4. There are six data points, shown as circles.
The fifth-degree interpolating polynomial is represented by the solid line. The inter-
polant looks fine within the range of data points, but drastically departs from the
obvious trend when x > 12. Extrapolating y at x = 14, for example, would be absurd
in this case.

If extrapolation cannot be avoided, the following three measures can be useful:

¢ Plot the data and visually verify that the extrapolated value makes sense.

e Use a low-order polynomial based on nearest-neighbor data points. Linear or
quadratic interpolant, for example, would yield a reasonable estimate of y(14)
for the data in Fig. 3.4.
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400

Figure 3.4. Extrapolation may not follow the trend of data.

e Work with a plot of log x versus log y, which is usually much smoother than the
x—y curve, and thus safer to extrapolate. Frequently, this plot is almost a straight

line. This is illustrated in Fig. 3.5, which represents the logarithmic plot of the
data in Fig. 3.4.

=100

10
1

Figure 3.5. Logarithmic plot of the data in Fig. 3.4.
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EXAMPLE 3.1
Given the data points

use Lagrange’s method to determine y at x = 1.

Solution
oo FoX)x-—x)  A-2d-3 1
T —x)n—x)  (0-2)0-3) 3
o Gmw-x)  1-00-3)
2T - —x) (2-0)(2-3)
oo Gmwa-x) _1-00-2 1
ST m-—x)s-x) B-0B-2) 3

7 28

y:y1£1+y2£2+y3£3=§+11—?:4

EXAMPLE 3.2

The data points

x| =21 4| -1 3 —4
yi -1|2]59 4|24 | =53

lie on a polynomial. Determine the degree of this polynomial by constructing the
divided difference table, similar to Table 3.1.

Solution
il [ oy [V [ Vo | Vo [ Vi [ Vo |
1| -2 -1
2 1 2 1
3 59 10 3
4 | -1 4 5 -2 1
5 24 5 2 1 0
6 | —4 | —53 26 -5 1 0 0

Here are a few sample calculations used in arriving at the figures in the table:

_B=n 59— (=D _

\v4 = =10
B e n 4-(2
Vys —V 10—-1
szg = y3 y2 = :3
X3 — X2 4—-1
V2yg — V2 -5-3
Vs = Ve Vs —1

X6 — X3 _—4—4_
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From the table, we see that the last nonzero coefficient (last nonzero diagonal term)
of Newton’s polynomial is V3y3, which is the coefficient of the cubic term. Hence the
polynomial is a cubic.

EXAMPLE 3.3
Given the data points

X 4.0 3.9 3.8 3.7
y || —0.06604 | —0.02724 | 0.01282 | 0.05383

determine the root of y(x) = 0 by Neville’s method.

Solution This is an example of inverse interpolation, where the roles of x and y are
interchanged. Instead of computing y at a given x, we are finding x that corresponds
to a given y (in this case, y = 0). Employing the format of Table 3.2 (with x and y
interchanged, of course), we obtain

i w [ mU=x[PALI[RLI[AL,.]
1 | —0.06604 4.0 3.8298 | 3.8316 3.8317
2 | —0.02724 3.9 3.8320 | 3.8318
3 0.01282 3.8 3.8313
4 0.05383 3.7

The following are a couple of sample computations used in the table:

=) Blnl+ n — y) Pylyel

P[ ) ]:
e =52
_ (0+0.02724)(4.0) + (~0.06604 — 0)3.9) _ , 00
—0.06604 + 0.02724
& — y2) Pilys, y3 + (72 — ¥) Pilys, yal
Ply2, 3, yal = Y= Yo Rily2, ysl + 2 — y) F1lys, YVa

Y2 — Ya
_ (0—-0.05383)(3.8320) + (—0.02724 — 0)(3.8313)
- —0.02724 — 0.05383

= 3.8318

All the Ps in the table are estimates of the root resulting from different orders of
interpolation involving different data points. For example, P;[y;, y.] is the root ob-
tained from linear interpolation based on the first two points, and P:[y», 3, y4] is
the result from quadratic interpolation using the last three points. The root obtained
from cubic interpolation over all four data points is x = P;[y1, y2, ¥3, y4] = 3.8317.

EXAMPLE 3.4

The data points in the table lie on the plot of f(x) = 4.8 cos 7 x/20. Interpolate this
data by Newton’s method at x = 0, 0.5, 1.0, ..., 8.0 and compare the results with the
“exact” values given by y = f(x).

X 0.15 2.30 3.15 4.85 6.25 7.95
y || 4.79867 | 4.49013 | 4.2243 | 3.47313 | 2.66674 | 1.51909
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Solution

% Example 3.4 (Newton’s interpolation)

xData = [0.15; 2.3; 3.15; 4.85; 6.25; 7.95];

yData = [4.79867; 4.49013; 4.22430; 3.47313;...

2.66674; 1.519091];

a = newtonCoeff(xData,yData);

’ X yInterp yExact’

for x = 0: 0.5: 8
y = newtonPoly(a,xData,x);
yvExact = 4.8*%cos(pi*x/20);
fprintf(’%10.5f’ ,x,y,yExact)
fprintf(’\n’)

end

The results are:

ans =

X yInterp yExact
0.00000 4.80003 4.80000
0.50000 4.78518 4.78520
1.00000 4.74088 4.74090
1.50000 4.66736 4.66738
2.00000 4.56507 4.56507
2.50000 4.43462 4.43462
3.00000 4.27683 4.27683
3.50000 4.09267 4.09267
4.00000 3.88327 3.88328
4.50000 3.64994 3.64995
5.00000 3.39411 3.39411
5.50000 3.11735 3.11735
6.00000 2.82137 2.82137
6.50000 2.50799 2.50799
7.00000 2.17915 2.17915
7.50000 1.83687 1.83688
8.00000 1.48329 1.48328

Rational Function Interpolation

Some data are better interpolated by rational functions rather than polynomials. A
rational function R(x) is the quotient of two polynomials:

Pu(x) _ a1x™ + apx™ ! + - + amX + Qi
Qn(x) by x" + box™ ' + -« + bpX + bpyy

R(x) =
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Because R(x) is a ratio, it can be scaled so that one of the coefficients (usually b,,;1)
is unity. That leaves m + n + 1 undetermined coefficients that must be computed by
forcing R(x) through m+ n+ 1 data points.

A popular version of R(x) is the so-called diagonal rational function, where the
degree of the numerator is equal to that of the denominator (m = n) if m + nis even,
orless by one (m = n — 1) if m + nis odd. The advantage of using the diagonal form is
that the interpolation can be carried out with a Neville-type algorithm, similar to that
outlined in Table 3.2. The recursive formula that is the basis of the algorithm is due
to Stoer and Bulirsch”. It is somewhat more complex than Eq. (3.8) used in Neville’s

method:

Rlxi, Xiv1, .., Xipk] = RIXig1, Xigo, -+ o5 Xigk] (3.9a)

R(xi1, Xiy2, - oy Xigx] — R[Xi, Xig1, - o5 Xigpk—1]
+
S
where
g XX ( _ RIXi1, Xivo, - Xigk] — Rl X1, - - - Xigk—1] ) 1 (3.9

X — Xitk R[Xit1, Xiy2, -5 Xigx) — RXip1, Xigo, - Xip—1]
In Egs. (3.9) RIx;, Xit1, ..., Xitx] denotes the diagonal rational function that passes
through the data points (x;, yi), (Xit1, Yi+1) - - -» (Xitk> Vitk). It is understood that
RIx;, Xi41, ..., Xi-1] = 0 (corresponding to the case k = —1) and R[x;] = y; (the case
k =0).

The computations can be carried out in a tableau, similar to Table 3.2 used for
Neville’s method. An example of the tableau for four data points is shown in Table 3.3.
We start by filling the column k = —1 with zeros and entering the values of y; in the
column k = 0. The remaining entries are computed by applying Eqgs. (3.9).

k=-1 k=0 k=1 k=2 k=3
X1 0 Rlx] =y | Rlx, x2] | Rlxy, X2, x3] | Rlx1, X2, X3, X4]
X 0 R[x] = yo | Rlx, x3] | Rlx2, X3, X4]
X3 0 Rix3] = y3 | Rlx3, X4]
Xy 0 R(x4] = ya
Table 3.3

B rational

We managed to implement Neville’s algorithm with the tableau “compressed” to a
one-dimensional array. This will not work with the rational function interpolation,
where the formula for computing an R in the kth column involves entries in columns
k — 1 as well as k — 2. However, we can work with two one-dimensional arrays, one
array (called r in the program) containing the latest values of R while the other array

4 Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer, New York, 1980.



www.MatlabKar.com e b (g3lo and - e byl - 15 cdie col

3.2 Polynomial Interpolation

(r014) saves the previous entries. Here is the algorithm for diagonal rational function
interpolation:

function yInterp = rational(xData,yData,x)
% Rational function interpolation;

% returns value of the interpolant at x.

% USAGE: yInterp = rational(xData,yData,x)
% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

length(xData);

=4
1

r = yData;
rO0ld = zeros(l,m);
for k = 1:m-1
for i = 1:m-k
if x == xData(i+k)
yInterp = yData(i+k);
return
else
cl = r(i+l) - r(i);
c2 r(i+l) - r0ld(i+l);
c3 = (x - xData(i))/(x - xData(i+k));
r(i) = r(i+1)+ cl1/(c3*(1 - cl/c2) - 1);
r0ld(i+1l) = r(i+l);

end
end
end
yInterp = r(1l);

EXAMPLE 3.5
Given the data

x| 0 0.6 0.8 0.95
y || 0| 1.3764 | 3.0777 | 12.7062

determine y(0.5) by the diagonal rational function interpolation.

Solution The plot of the data points indicates that y may have a pole at around x = 1.
Such a function is a very poor candidate for polynomial interpolation, but can be
readily represented by a rational function.
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We set up our work in the format of Table 3.3. After completing the computations,
the table looks like this:

k=-1 k=0 k=1 k=2 k=3

i=1 0 0 0 0 0.9544 | 1.0131
i=21] 06 0 1.3764 | 1.0784 | 1.0327

i=3]| 08 0 3.0777 | 1.2235

i=41095 0 12.7062

Let us now look at a few sample computations. We obtain, for example, R[x3, x4] by
substituting i = 3, k = 1 into Egs. (3.9). This yields

Szx—xg (1_ R[x4] — R[x3] )_1
X — X R(x4] — Rlxs, ..., x3]

05-0.8 < 12.7062 — 3.0777

) —1=-0.83852

~ 05-095 12.7062 — 0
Rix4] — R[x
Rixs, 1] = R+~ )
12.7062 — 3.0777
= 12.7062 + = 1.2235
—0.83852

The entry R[x;, x3, x4] is obtained with i = 2, k = 2. The result is

X— X <1 _ Rixs, x4] — Rlx,, xa]) B
X— X Rix3, x4] — R[x3]
_ 05-06 <1 _ 1.2235-1.0784
0.5—10.95 1.2235 — 3.0777
Rlx3, X4] — RIXz, X3]
S
1.2235 — 1.0784

=122 —————— =1.032
3B+ —0.76039 0327

S:

) —1=-0.76039

R(xo, x3, X4] = R[xX3, X4] +
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3.2 Polynomial Interpolation

The interpolant at x = 0.5 based on all four data points is R[x;, X2, X3, X4] =

1.0131.

EXAMPLE 3.6

Interpolate the data shown at x increments of 0.05 and plot the results. Use both the

e b (55l 4t

polynomial interpolation and the rational function interpolation.

- e sl - S i gl

X 0.1 0.2 0.5 0.6 0.8 1.2 1.5
y || —1.5342 | —1.0811 | —0.4445 | —0.3085 | —0.0868 | 0.2281 | 0.3824
Solution
% Example 3.6 (Interpolation)
xData = [0.1; 0.2; 0.5; 0.6; 0.8; 1.2; 1.5];
yData = [-1.5342; -1.0811; -0.4445; -0.3085;

-0.0868; 0.2281; 0.38247;

x = 0.1:0.05:1.5;
n = length(x);
y = zeros(n,2);

for i = 1:n

y(i,1l) = rational(xData,yData,x(i));

y(i,2) = neville(xData,yData,x(i));

end
plot(x,y(:,1),’k-");hold on
plot(x,y(:,2),’k:’);hold on
plot(xData,yData, 'ko’)

grid on
xlabel(’x’);ylabel(’'y’)

05 ;

0 0.5

15
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In this case, the rational function interpolant (solid line) is smoother, and thus
superior to the polynomial interpolant (dotted line).

Interpolation with Cubic Spline
If there are more than a few data points, a cubic spline is hard to beat as a global

interpolant. It is considerably “stiffer” than a polynomial in the sense that it has less
tendency to oscillate between data points.

Elastic strip

Pins (data points)

X

Figure 3.6. Mechanical model of natural cubic spline.

The mechanical model of a cubic spline is shown in Fig. 3.6. It is a thin, elas-
tic strip that is attached with pins to the data points. Because the strip is unloaded
between the pins, each segment of the spline curve is a cubic polynomial — recall
from beam theory that the differential equation for the displacement of a beam is
d*y/dx* = q/(EI), so that y(x) is a cubic since the load g vanishes. At the pins, the
slope and bending moment (and hence the second derivative) are continuous. There
is no bending moment at the two end pins; hence, the second derivative of the spline
is zero at the end points. Since these end conditions occur naturally in the beam
model, the resulting curve is known as the natural cubic spline. The pins, that is, the
data points are called the knots of the spline.

Figure 3.7 shows a cubic spline that spans n knots. We use the notation f; ;1 (x)
for the cubic polynomial that spans the segment between knots i and i + 1. Note

Figure 3.7. Cubic spline.
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that the spline is a piecewise cubic curve, put together from the n— 1 cubics
fi,2(x), £,3(%), ..., fum1,n(x), all of which have different coefficients.

Denoting the second derivative of the spline at knot i by k;, continuity of second
derivatives requires that

Flaix) = i () = ki (@)

At this stage, each k is unknown, except for

The starting point for computing the coefficients of f;;,;(x) is the expression for

1

(x), which we know to be linear. Using Lagrange’s two-point interpolation, we

Qi+l
can write
Ji1 (0 = kil (%) + kip1€i11(x)
where
X — X X — X
G = = g = —
Xi — Xi+1 Xit1 — Xi
Therefore,
ki(x — xi41) — ki (x — x7)
! X) = b
fisa ) Xi — Xi ®)
Integrating twice with respect to x, we obtain
ki(x — x:41)% — kipa (x — ;)3
fin(x) = +A(x — xi41) — Blx — x3) (©)

6(x;i — xit1)

where A and B are constants of integration. The last two terms in Eq. (c) would usu-
ally be written as Cx + D. By letting C = A — Band D = —Ax;;; + Bx;, we end up
with the terms in Eq. (c), which are more convenient to use in computations that
follow.

Imposing the condition f;;;;(x;) = y;, we get from Eq. (c)

ki(x; — xi41)3

A — X)) = Vi
6(xl~—x,~+1) + A(x; xl+l) Vi

Therefore,

D S P
A= X — le 6 (xl xH—l) (d)

Similarly, f;;1(xi+1) = yi41 yields

Yi+1 kiy1
B=—""— — ——(x,— X e
X — Xin 6 ( i l+1) ( )
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Substituting Egs. (d) and (e) into Eq. (c) results in

k; (x — X )3
ﬁ,i+1 (x) = El [ﬁ — (X — X1 (X — xi+1)]
k; (x — x;)3
=t [7 — (X — X)) (% — Xiz1) (3.10)
6 [Xxi— X
+%M—Mﬂ)—%ﬂu—xﬂ
Xi — Xi+1
The second derivatives k; of the spline at the interior knots are obtained from the
slope continuity conditions f/ 1,i(xi) = ifi 1 (X0, wherei =2, 3, ..., n — 1. After alittle

algebra, this results in the simultaneous equations

iy (xi-1 — xi) + 2k (-1 — Xi41) + ki1 (6 — Xig1)

:6<%4_%_%_%H)' i=2,3,...,n-1 (3.11)
Xi-1— Xi  Xi — Xjq1

Because Eqgs. (3.11) have a tridiagonal coefficient matrix, they can be solved econom-
ically with functions LUdec3 and LUso013 described in Section 2.4.

If the data points are evenly spaced atintervals i, then x;_; — x; = x; — X;41 = —h,
and the Egs. (3.11) simplify to
6 .
kioy+4ki+kip = ﬁ(%’—l —2Yi+¥yir), i=23,...,n—1 (3.12)

B splineCurv

The first stage of cubic spline interpolation is to set up Egs. (3.11) and solve them
for the unknown ks (recall that k; = k, = 0). This task is carried out by the function
splineCurv:

function k = splineCurv(xData,yData)

% Returns curvatures of a cubic spline at the knots.
% USAGE: k = splineCurv(xData,yData)

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

n = length(xData);

c = zeros(n-1,1); d = ones(n,1);

e = zeros(n-1,1); k = zeros(n,1);

c(l:n-2) = xData(l:n-2) - xData(2:n-1);
d(2:n-1) 2*(xData(l:n-2) - xData(3:n));
e(2:n-1) = xData(2:n-1) - xData(3:n);
k(2:n-1) = 6*(yData(l:n-2) - yData(2:n-1))...
./(xData(l:n-2) - xData(2:n-1))...
6*(yData(2:n-1) - yData(3:n))...
./(xData(2:n-1) - xData(3:n));
[c,d,e] = LUdec3(c,d,e);

k = LUsol3(c,d,e,k);
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B splineEval

The function splineEval computes the interpolant at x from Eq. (3.10). The sub-
function findSeg finds the segment of the spline that contains x by the method of
bisection. It returns the segment number; that is, the value of the subscript i in Eq.
(3.10).

function y = splineEval(xData,yData,k,x)

%
%
%
%
%
%

Returns value of cubic spline interpolant at x.
USAGE: y = splineEval(xData,yData,k,x)

xData = x-coordinates of data points.

yData = y-coordinates of data points.

k = curvatures of spline at the knots;

returned by the function splineCurv.

= findSeg(xData,x);

= xData(i) - xData(i+1l);

= ((x - xData(i+1))"3/h - (x - xData(i+1))*h)*k(i)/6.0...
- ((x - xData(i))"3/h - (x - xData(i))*h)*k(i+1)/6.0...

+ yData(i)*(x - xData(i+1))/h...

- yData(i+1l)*(x - xData(i))/h;

function i = findSeg(xData,x)

%

Returns index of segment containing x.

ileft = 1; iRight = length(xData);
while 1

if(iRight - iLeft) <=1
i = ilLeft; return
end
i = fix((ileft + iRight)/2);
if x < xData(i)
iRight = 1i;
else
iLeft = i;

end

end

EXAMPLE 3.7
Use natural cubic spline to determine y at x = 1.5. The data points are
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Solution The five knots are equally spaced at i = 1. Recalling that the second deriva-
tive of a natural spline is zero at the first and last knot, we have k; = ks = 0. The sec-
ond derivatives at the other knots are obtained from Eq. (3.12). Using i = 2, 3, 4, we
get the simultaneous equations

0+4ky,+ks=6[0—-2(1)+0]=-12
ko +4ks + ks =6[1—-2(0)+1] =12
ks +4ks+0=6[0—-2(1)+0] =-12
The solution is k, = k4 = —30/7, k3 = 36/7.
The point x = 1.5 lies in the segment between knots 1 and 2. The corresponding

interpolant is obtained from Eq. (3.10) by settingi = 1. With x; — x;,.; = —h = —1, we
obtain

k k
f2x) = _El [(x—22)° — (x — )] + Ez [(x —x1)® = (x — x1)]
—[nx = x2) — yo(x — x1)]

Therefore,

y(1.5) = fi,2(1.5)

=0+ % (-?) [1.5-1°—(1.5-1]—[0-1(1.5-1)]
= 0.7679

The plot of the interpolant, which in this case is made up of four cubic segments, is
shown in the figure.

|
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EXAMPLE 3.8

Sometimes it is preferable to replace one or both of the end conditions of the cu-
bic spline with something other than the natural conditions. Use the end condition
/i 2(0) = 0 (zero slope), rather than f",(0) = 0 (zero curvature), to determine the cu-
bic spline interpolant at x = 2.6 based on the data points

x[ol1] 2 [3
yl1]1]o05]0

Solution We must first modify Egs. (3.12) to account for the new end condition. Set-
tingi = 1 in Eq. (3.10) and differentiating, we get

2 )2
flz( )— [ M (xl_xz)]_@[gu_(xl_xz)} 11 )2

X1 — X 6 X — X 1— X2

Thus the end condition fi/yg(xl) = Oyields

yi—)
X1 — X2

k k
gl(xl—xzwg(xl—xzu =0

or

yi—J)2
2k + k -6
e (X1 — x2)?

From the given data, we see that y; = y» = 1, so that the last equation becomes
2ki +k, =0 (@

The other equations in Eq. (3.12) are unchanged. Noting that k, = 0 and & = 1, they
are

ki +4ky + ks =6[1-2(1)+0.5]=-3 (b)
k2+4k3 =6[1-2(0.5)4+0]=0 (c)

The solution of Egs. (a)—(c) is k; = 0.4615, k, = —0.9231, k3 = 0.2308.
The interpolant can now be evaluated from Eq. (3.10). Substitutingi = 3 and x; —
Xi;1 = —1, we obtain

k
falx) = [ (=2 + (e = 2] = 2 [~ = 1)° + (0 - )]
—y3(x — x3) + ya(x — x2)

Therefore,

0.2308

y(2.6) = f34(2.6) = 5

= 0.1871

[~(—0.4)% + (—0.4)] + 0 — 0.5(~0.4) + 0

EXAMPLE 3.9
Write a program that interpolates between given data points with the natural cubic
spline. The program must be able to evaluate the interpolant for more than one value
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of x. As a test, use data points specified in Example 3.7 and compute the interpolant
at x = 1.5 and x = 4.5 (due to symmetry, these values should be equal).

Solution The program below prompts for x; it is terminated by pressing the “return”
key.

% Example 3.9 (Cubic spline)
xData = [1; 2; 3; 4; 51;
yData = [0; 1; O; 1; 071;
k = splineCurv(xData,yData);
while 1
x = input(’x = ’);
if isempty(x)
fprintf(’Done’); break
end
y = splineEval(xData,yData,k,x)
fprintf(’\n’)

end

Running the program produces the following results:

x = 1.5
Y:

0.7679
x = 4.5
Y:

0.7679
X =
Done

PROBLEM SET 3.1

1. Given the data points

X —-12 0.3 1.1
y | =576 | =5.61 | —3.69

determine y at x = 0 using (a) Neville’s method and (b) Lagrange’s method.
2. Find the zero of y(x) from the following data:

X 0 0.5 1 1.5 2 2.5 3
y || 1.8421 | 2.4694 | 2.4921 | 1.9047 | 0.8509 | —0.4112 | —1.5727
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Use Lagrange’s interpolation over (a) three and (b) four nearest-neighbor data
points. Hint: After finishing part (a), part (b) can be computed with a relatively
small effort.

3. The function y(x) represented by the data in Problem 2 has a maximum at
x = 0.7692. Compute this maximum by Neville’s interpolation over four nearest-
neighbor data points.

4. Use Neville’s method to compute y at x = 7 /4 from the data points

X 0 0.5 1 1.5 2
y || —1.00 | 1.75 | 4.00 | 5.75 | 7.00

5. Given the data

X 0 0.5 1 1.5 2
y || —0.7854 | 0.6529 | 1.7390 | 2.2071 | 1.9425

find y at x = 7 /4 and at 7 /2. Use the method that you consider to be most con-
venient.
6. The points

x[—2[1] a]-1] 3] -4
y-1]259] 4a|24] 53

lie on a polynomial. Use the divided difference table of Newton’s method to de-
termine the degree of the polynomial.

7. Use Newton’s method to find the expression for the lowest-order polynomial that
fits the following points:

x[-3[2]-1] 3]1
yII ofs]-4]12]0

8. Use Neville’s method to determine the equation of the quadratic that passes
through the points

x[-1] 1 3
y[17]=7]=15

9. Density of air p varies with elevation £ in the following manner:

h (km) 0 3 6
o (kg/m3) || 1.225 | 0.905 | 0.652

Express p(h) as a quadratic function using Lagrange’s method.
10. Determine the natural cubic spline that passes through the data points

x||0|1]|2
yio|2|1

Note that the interpolant consists of two cubics, one valid in 0 < x < 1, the other
in 1 < x < 2. Verify that these cubics have the same first and second derivatives
atx = 1.
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11. Given the data points

x[ 12345
yl13]15]12]9]13

determine the natural cubic spline interpolant at x = 3.4.
12. Compute the zero of the function y(x) from the following data:

X 0.2 0.4 0.6 0.8 1.0
vy || 1.150 | 0.855 | 0.377 | —0.266 | —1.049

Use inverse interpolation with the natural cubic spline. Hint: Reorder the data so
that the values of y are in ascending order.

13. Solve Example 3.8 with a cubic spline that has constant second derivatives within
its first and last segments (the end segments are parabolic). The end conditions
for this spline are ky = k; and k,,_; = k.

14. W Write a computer program for interpolation by Neville’s method. The program
must be able to compute the interpolant at several user-specified values of x. Test
the program by determining y at x = 1.1, 1.2, and 1.3 from the following data:

X -2.0 —0.1 —-15 0.5
y || 2.2796 | 1.0025 | 1.6467 | 1.0635
X -0.6 2.2 1.0 1.8
y || 1.0920 | 2.6291 | 1.2661 | 1.9896

(Answer: y = 1.3262, 1.3938, 1.4639)
15. M The specific heat ¢, of aluminum depends on temperature T as follows:”

T (°C) —250 —200 | —100 0 100 | 300
cp (kJ/kg:K) || —0.0163 | 0.318 | 0.699 | 0.870 | 0.941 | 1.04

Plot the polynomial and rational function interpolants from T = —250° to 500°.
Comment on the results.
16. W Using the data

X 0 0.0204 | 0.1055 | 0.241 | 0.582 | 0.712 | 0.981
vy || 0.385 1.04 1.79 2.63 439 | 4.99 5.27

plot the polynomial and rational function interpolants from x = 0 to x = 1.

17. W The table shows the drag coefficient cp of a sphere as a function of Reynold’s
number Re.® Use natural cubic spline to find cp at Re= 5, 50, 500, and 5000. Hint:
Use log-log scale.

Re || 0.2 2 20 200 2000 | 20000
cp || 103 | 13.9 | 2.72 | 0.800 | 0.401 | 0.433

5 Source: Black, Z.B., and Hartley, J.G., Thermodynamics, Harper & Row, New York, 1985.
6 Source: Kreith, F, Principles of Heat Transfer, Harper & Row, New York, 1973.
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18. M Solve Problem 17 using a rational function interpolant (do not use log scale).
19. W Kinematic viscosity p; of water varies with temperature 7T in the following
manner:

T (°Q) 0 21.1 | 37.8 54.4 71.1 87.8 100
i (1073 m?/s) || 1.79 | 1.13 | 0.696 | 0.519 | 0.338 | 0.321 | 0.296

Interpolate p; at T = 10°, 30°, 60°, and 90°C.
20. M The table shows how the relative density p of air varies with altitude h. Deter-
mine the relative density of air at 10.5 km.

h(km) || 0 | 1.525 | 3.050 | 4.575 6.10 7.625 9.150
0 1| 0.8617 | 0.7385 | 0.6292 | 0.5328 | 0.4481 | 0.3741

21. W The vibrational amplitude of a driveshaft is measured at various speeds. The
results are

Speed (rpm) 0 | 400 800 1200 | 1600
Amplitude (mm) || 0 | 0.072 | 0.233 | 0.712 | 3.400

Use rational function interpolation to plot amplitude versus speed from 0 to 2500
rpm. From the plot, estimate the speed of the shaft at resonance.

Least-Squares Fit
Overview

If the data are obtained from experiments, these typically contain a significant
amount of random noise due to measurement errors. The task of curve fitting is to
find a smooth curve that fits the data points “on the average.” This curve should have
a simple form (e.g., a low-order polynomial), so as to not reproduce the noise.

Let

f&x) = far, a, ..., an

be the function that is to be fitted to the n data points (x;, y3),i =1, 2, ..., n. The
notation implies that we have a function of x that contains the parameters a;, j =
1,2,..., m, where m < n. The form of f(x) is determined beforehand, usually from
the theory associated with the experiment from which the data are obtained. The
only means of adjusting the fit are the parameters. For example, if the data represent
the displacements y; of an overdamped mass—spring system at time #;, the theory
suggests the choice f(f) = a;te~*". Thus curve fitting consists of two steps: choosing
the form of f(x), followed by computation of the parameters that produce the best fit
to the data.

This brings us to the question: What is meant by “best” fit? If the noise is confined
to the y-coordinate, the most commonly used measure is the least-squares fit, which
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minimizes the function

n

Sy, as, ....am = Y [yi — flx)]” (3.13)
i=1
with respect to each a;. Therefore, the optimal values of the parameters are given by
the solution of the equations

S

— =0, k=1,2,...,m (3.14)
oay

The terms r; = y; — f(x;) in Eq. (3.13) are called residuals; they represent the discrep-
ancy between the data points and the fitting function at x;. The function S to be min-
imized is thus the sum of the squares of the residuals. Equations (3.14) are generally
nonlinear in a; and may thus be difficult to solve. If the fitting function is chosen as
a linear combination of specified functions f;(x):

fX) =afilx) +axfo(x) + - + amfm(x)

then Egs. (3.14) are linear. A typical example is a polynomial where fi(x) = 1, f2(x) =
x, f3(x) = x2, etc.

The spread of the data about the fitting curve is quantified by the standard devi-
ation, defined as

S
n—m

o =

(3.15)

Note that if n = m, we have interpolation, not curve fitting. In that case, both the
numerator and the denominator in Eq. (3.15) are zero, so that o is meaningless, as it
should be.

Fitting a Straight Line

Fitting a straight line
fx) =a+bx (3.16)

to data is also known as linear regression. In this case the function to be minimized is

n

S(a, b) = Z (vi—a- bxi)z

i=1

Equations (3.14) now become

88 n n n

32 =Z—Z(y,-—a—bx,-)=2(—Zy,-+na+b2x,-> =0
a3 i=1 i=1

N

= Z—Z(yi—a—bxi)xi:2<—inyi+a2xi+b2xf) =0
im1 im1 im1 im1
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Dividing both equations by 2n and rearranging terms, we get

where
Vi (3.17)

are the mean values of the x and y data. The solution for the parameters is

a:ny?—chxiyi p— 2 XiYi — nxy
> x? — nx? > x? — nx?

(3.18)

These expressions are susceptible to roundoff errors (the two terms in each numera-
tor as well as in each denominator can be roughly equal). It is better to compute the
parameters from

b > yilxi — X)
Y X — %)

which are equivalent to Egs. (3.18), but much less affected by rounding off.

a=7y—3xb (3.19)

Fitting Linear Forms
Consider the least-squares fit of the linear form
f =a1filx)+axfo(x) + -+ amfmx) = Zajfj(x) (3.20)
j=1

where each f;(x) is a predetermined function of x, called a basis function. Substitu-
tion into Eq. (3.13) yields

2
S=>" |:yi - a,-fj(xi)} (@)
i=1 j=1

Thus Egs. (3.14) are
8 S n m
= -2 Z Vi— ) ajfix) | i) =0, k=1,2,...,m
i=1 j=1
Dropping the constant (—2) and interchanging the order of summation, we get
m n n
> {ij(xi)fk(xi)} aj=Y fidy, k=1,2,...,m
j=1 Li=1 i=1

In matrix notation these equations are

Aa=>b (3.21a)
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where
A=Y fiGfile) b= filx)y; (3.21b)
i=1 i=1

Equations (3.21a), known as the normal equations of the least-squares fit, can be
solved with any of the methods discussed in Chapter 2. Note that the coefficient ma-
trix is symmetric, that is, Ay; = A j.

Polynomial Fit

A commonly used linear form is a polynomial. If the degree of the polynomial is
m—1, wehave f(x) = 7", a;x/~". Here the basic functions are

fo=x"" j=12..m (3.22)

so that Egs. (3.21b) become

n

n
- j+k-2 _ k-1,
Agj =) x| be=) x 'y
i=1

i=1

or
n Xy x? D D i Sy
in lez Zx? Zx{”“ in.Vi
A= . . . . . =1 . (3.23)
St yam Yt Y xR Sty

where ) stands for Y ! ,. The normal equations become progressively ill-
conditioned with increasing m. Fortunately, this is of little practical consequence,
because only low-order polynomials are useful in curve fitting. Polynomials of high
order are not recommended, because they tend to reproduce the noise inherent in
the data.

B polynFit

The function polynFit computes the coefficients of a polynomial of degree m — 1
to fit n data points in the least-squares sense. To facilitate computations, the terms
n, Y x;, Y x%,...,Y x2" % that make up the coefficient matrix A in Eq. (3.23) are first
stored in the vector s and then inserted into A. The normal equations are solved for
the coefficient vector coeff by Gauss elimination with pivoting. Since the elements
of coeff emerging from the solution are not arranged in the usual order (the coeffi-
cient of the highest power of x first), the coeff array is “flipped” upside-down before
returning to the calling program.

function coeff = polynFit(xData,yData,m)

% Returns the coefficients of the polynomial
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% a(l)*x"(m-1) + a(2)*x"(m-2) + ... + a(m)

% that fits the data points in the least squares sense.
% USAGE: coeff = polynFit(xData,yData,m)

% xData = x-coordinates of data points.

% yData = y-coordinates of data points.

A = zeros(m); b = zeros(m,1); s = zeros(2*m-1,1);
for i = 1l:length(xData)
temp = yData(i);
for j = 1:m
b(3)
temp = temp*xData(i);

b(j) + temp;

end
temp = 1;
for j = 1:2*m-1
s(J) = s(J) + temp;
temp = temp*xData(i);
end
end
for i = 1:m
for j = 1:m
ACi,§) = s(i+j-1);
end
end
% Rearrange coefficients so that coefficient
% of x"(m-1) is first
coeff = flipdim(gaussPiv(A,b),1);

W stdDev

After the coefficients of the fitting polynomial have been obtained, the standard
deviation o can be computed with the function stdDev. The polynomial evalua-
tion in stdDev is carried out by the subfunction polyEval which is described in
Section 4.7 — see Eq. (4.10).

function sigma = stdDev(coeff,xData,yData)

% Returns the standard deviation between data
% points and the polynomial

% a(l)*x " (m-1) + a(2)*x"(m-2) + ... + a(m)

% USAGE: sigma = stdDev(coeff,xData,yData)

% coeff = coefficients of the polynomial.

% xData = x-coordinates of data points.
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% yData = y-coordinates of data points.

m = length(coeff); n = length(xData);
0;

for i =1:n

sigma

y = polyEval(coeff,xData(i));
sigma = sigma + (yData(i) - y) " 2;
end

sigma =sqrt(sigma/(n - m));

function y = polyEval(coeff, x)

% Returns the value of the polynomial at x.
m length(coeff);

y coeff(1);

for j = 1:m-1

y = y*x + coeff(j+1);

end

Weighting of Data

There are occasions when confidence in the accuracy of data varies from point to
point. For example, the instrument taking the measurements may be more sensitive
in a certain range of data. Sometimes the data represent the results of several exper-
iments, each carried out under different circumstances. Under these conditions, we
may want to assign a confidence factor, or weight, to each data point and minimize
the sum of the squares of the weighted residuals r; = W[y; — f(x;)], where W, are the
weights. Hence the function to be minimized is

Slay, az, ..., am) = Z W[y — f(xi)]2 (3.24)
i=1

This procedure forces the fitting function f(x) closer to the data points that have a
higher weight.

Weighted Linear Regression
If the fitting function is the straight line f(x) = a + bx, Eq. (3.24) becomes

Sta, b) =Y W2(y; —a — bx))’ (3.25)

i=1
The conditions for minimizing S are

i5——22’1:W2( ;—a—Dbx;) =0
da = i i v
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38 =
b 2—2;‘/\4 (yi—a—bx)x;=0
or
n n n
aY WE+by Wrxi=)Y Wy (3.26a)
i=1 i=1 i1
n n n
ay WPxi+b) Wixi=) Wxyi (3.26b)
i=1 i=1 i=1

Dividing Eq. (4.26a) by >~ W? and introducing the weighted averages

LWk S Wy

> W > W (3.27)

X‘:

we obtain
a=7jy—bx (3.28a)
Substituting Eq. (3.28a) into Eq. (3.26b) and solving for b yields after some algebra

_ i Wil — ®)

= 3.28b
S W — B (3:285)

Note that Egs. (3.28) are similar to Egs. (3.19) of unweighted data.

Fitting Exponential Functions
A special application of weighted linear regression arises in fitting exponential func-
tions to data. Consider as an example the fitting function

f(x) = ae’™

Normally, the least-squares fit would lead to equations that are nonlinear in a and b.
But if we fit In y rather than y, the problem is transformed to linear regression: fit the
function

F(x) =In f(x) =Ina + bx

to the data points (x;, In y;),7 =1, 2, ..., n. This simplification comes at a price: least-
squares fit to the logarithm of the data is not the same as least-squares fit to the orig-
inal data. The residuals of the logarithmic fit are

R =Iny;— F(x;) =Iny; —Ina — bx; (3.29a)
whereas the residuals used in fitting the original data are
ri=yi— ) = yi — ae"™ (3.29b)

This discrepancy can be largely eliminated by weighting the logarithmic fit. We
note from Eq. (3.29b) that In(r; — y;) = In(aeb®) = Ina + bx;, so that Eq. (3.29a) can

e b (55ke annd - e 3590l - I e ol
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be written as

R=Iny;—In(r; —y;) =In (1 - %)

If the residuals r; are sufficiently small (r; < y;), we can use the approximation
In(1 — r;/y:) = ri/y;, so that

Ri = 1i/yi
We can now see that by minimizing " R?, we inadvertently introduced the weights
1/y;. This effect can be negated if we apply the weights y; when fitting F(x) to
(In y;, x;); that is, by minimizing

n
S=Y VR (3.30)
i=0

Other examples that also benefit from the weights W, = y; are given in Table 3.3.

’ fx) ‘ F(x) ‘ Data to be fitted by F(x) ‘
axeb* | In [f(x)/x] =Ina+ bx [x:, In(yi/x)]
ax? | Inf(x) =Ilna + bln(x) (Inx;, In y;)
Table 3.3

EXAMPLE 3.10
Fit a straight line to the data shown and compute the standard deviation.

x[oo]10[20]25]30
yl29]37]41]44]50

Solution The averages of the data are

1 00+1.0+2.0+25+4+3.0
5 5
_ 1 29+37+41+44450
The intercept a and slope b of the interpolant can now be determined from Eq. (3.19):
b= > Vil — %)
> xilx — %)

~29(-1.7) +3.7(—0.7) + 4.1(0.3) + 4.4(0.8) + 5.0(1.3)
T 0.0(=1.7) + 1.0(—0.7) + 2.0(0.3) + 2.5(0.8) + 3.0(1.3)
3.73

= —— =0.6431
5.8

a=7jy—xb=4.02-1.7(0.6431) = 2.927
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Therefore, the regression line is f(x) = 2.927 4 0.6431x, which is shown in the figure
together with the data points.

5.00

4.50

We start the evaluation of the standard deviation by computing the residuals:

y 2.900 | 3.700 4.100 4.400 | 5.000
fx) 2.927 | 3.570 4.213 4.535 | 4.856
y— fx) || —0.027 | 0.130 | —0.113 | —0.135 | 0.144

The sum of the squares of the residuals is

$=>"[vi— fe]
= (=0.027)? + (0.130)% + (—0.113)% + (—0.135)% + (0.144)> = 0.06936

so that the standard deviation in Eq. (3.15) becomes

S /0.06936
o= = =0.1520
5-2 3
EXAMPLE 3.11

Determine the parameters a and b so that f(x) = ae’” fits the following data in the
least-squares sense.

x ||| 1.2 28| 43 5.4 6.8 7.9
y| 751|161 | 389 | 67.0 | 146.6 | 266.2

Use two different methods: (1) fitIn y; and (2) fit In y; with weights W, = y;. Compute
the standard deviation in each case.

Solution of Part (1) The problem is to fit the function In(a e?*) = Ina + bx to the data

X 1.2 2.8 4.3 5.4 6.8 7.9
z=Iny || 2.015 | 2.779 | 3.661 | 4.205 | 4.988 | 5.584

We are now dealing with linear regression, where the parameters to be found are
A =1Ina and b. Following the steps in Example 3.10, we get (skipping some of the
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arithmetic details)

o1 o1
x=62x,-=4.733 z:EZz,:s.S?z

Y zlg-% 16716

T Y xi(x—Xx) 31.153
Therefore, a = e* = 3.790 and the fitting function becomes f(x) = 3.790e%5366, The
plots of f(x) and the data points are shown in the figure.

= 0.5366 A=2z—-3%b=1.3323

300

250
- 200
150
100

50

Here is the computation of standard deviation:

y 7.50 | 16.10 | 38.90 | 67.00 | 146.60 | 266.20
fx) 7.21 | 17.02 | 38.07 | 68.69 | 145.60 | 262.72
y—f(x) || 0.29 | —0.92 0.83 | —1.69 1.00 3.48

$=Y"[y- f)]* =17.59

o= i =2.10
6—-2
As pointed out before, this is an approximate solution of the stated problem,
since we did not fit y;, but In y;. Judging by the plot, the fit seems to be good.

Solution of Part (2) We again fit In(ae?™) =Ina + bx to z=1n y, but this time the
weights W; = y; are used. From Egs. (3.27) the weighted averages of the data are
(recall that we fitz =1n y)

2x;  737.5 x 103
LYk _ X 7474

YT T 86T <108

Y yiz 5282 x10°

- =5.353
Y yF 9867 x 10°

N>
I
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and Eqgs. (3.28) yield for the parameters

Y YVial — %)

3539 x 103

D))

~ 65.05 x 103

e b (55kw apnd - o 3590l -

= 0.5440

Ina = 2— bx = 5.353 — 0.5440(7.474) = 1.287

Therefore,

a=e

1 287

=3.622

W e ol

so that the fitting function is f(x) = 3.622e%5440% As expected, this result is somewhat
different from that obtained in Part (1).

The computations of the residuals and standard deviation are as follows:

y 7.50 | 16.10 | 38.90 | 67.00 | 146.60 | 266.20
fx) 6.96 | 16.61 | 37.56 | 68.33 | 146.33 | 266.20
—f(x) || 054 | —051 | 134 | -1.33| 0267 | 0.00
S=Y[yi—fx] > =4.186
S
= [—— =1.023
7TV6-2

Observe that the residuals and standard deviation are smaller than that in Part (1),
indicating a better fit, as expected.

It can be shown that fitting y; directly (which involves the solution of a transcen-
dental equation) results in f(x) = 3.614e%5*42, The corresponding standard deviation

is o = 1.022, which is very close to the result in Part (2).

EXAMPLE 3.12

Write a program that fits a polynomial of arbitrary degree k to the data points shown
below. Use the program to determine k that best fits these data in the least-squares

sense.
x || —0.04 0.93 1.95 2.90 3.83 | 5.00
y | —866 | —6.44 | —4.36 | —3.27 | —0.88 | 0.87
X 5.98 7.05 8.21 9.08 | 10.09
y 3.31 4.63 6.19 7.40 8.85

Solution The following program prompts for m. Execution is terminated by pressing

“return.”

% Example 3.12 (Polynomial curve fitting)
xData = [-0.04,0.93,1.95,2.90,3.83,5.0, ...
5.98,7.05,8.21,9.08,10.09]";

yData

3.31,4.63,6.19,7.4,8.85]";

[-8.66,-6.44,-4.36,-3.27,-0.88,0.87,...
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format short e
while 1

end

k = input(’degree of polynomial = ’);

if isempty(k) % Loop is terminated

fprintf(’Done’) % by pressing ’’
break

end

coeff = polynFit(xData,yData,k+1)

sigma = stdDev(coeff,xData,yData)

fprintf(’\n’)

The results are:

Degree of polynomial = 1

return’

coeff =
1.7286e+000
-7.9453e+000

sigma =
5.1128e-001

degree of polynomial

coeff =
-4.1971e-002
2.1512e+000
-8.5701e+000
sigma =
3.1099e-001

degree of polynomial

coeff =
-2.9852e-003
2.8845e-003
1.9810e+000
-8.4660e+000
sigma =
3.1948e-001

degree of polynomial

Done

2

3

e b (55kw annd - e 3590l - I e ol

Because the quadratic f(x) = —0.041971x? +2.1512x — 8.5701 produces the
smallest standard deviation, it can be considered as the “best” fit to the data. But
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be warned - the standard deviation is not an infallible measure of the goodness-
of-fit. It is always a good idea to plot the data points and f(x) before final determi-
nation is made. The plot of our data indicates that the quadratic (solid line) is indeed
areasonable choice for the fitting function.

10.0

5.0

0.0

-5.0

-10.0

PROBLEM SET 3.2

Instructions Plot the data points and the fitting function whenever appropriate.

1. Show that the straight line obtained by least-squares fit of unweighted data al-
ways passes through the point (%, y).
2. Use linear regression to find the line that fits the data

x| —1.0 -0.5 0 0.5 1.0
y || —1.00 | —0.55 | 0.00 | 0.45 | 1.00

and determine the standard deviation.
3. Three tensile tests were carried out on an aluminum bar. In each test the strain
was measured at the same values of stress. The results were

Stress (MPa) 345 | 69.0 | 103.5 | 138.0
Strain (Test1) || 0.46 | 0.95 | 1.48 1.93
Strain (Test2) || 0.34 | 1.02 | 1.51 2.09
Strain (Test3) || 0.73 | 1.10 | 1.62 2.12

where the units of strain are mm/m. Use linear regression to estimate the mod-
ulus of elasticity of the bar (modulus of elasticity = stress/strain).

4. Solve Problem 3, assuming that the third test was performed on an inferior ma-
chine, so that its results carry only half the weight of the other two tests.
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5. M Fit a straight line to the following data and compute the standard deviation.

X 0 0.5 1 1.5 2 2.5
y | 3.076 | 2.810 | 2.588 | 2.297 | 1.981 | 1.912
X 3 3.5 4 4.5 5

y || 1.653 | 1.478 | 1.399 | 1.018 | 0.794

6. M The table displays the mass M and average fuel consumption ¢ of motor vehi-
cles manufactured by Ford and Honda in 2008. Fit a straight line ¢ = a + bM to
the data and compute the standard deviation.

Model | M(kg) | ¢ (km/liter) |
Focus 1198 11.90
Crown Victoria | 1715 6.80
Expedition 2530 5.53
Explorer 2014 6.38
F-150 2136 5.53
Fusion 1492 8.50
Taurus 1652 7.65
Fit 1168 13.60
Accord 1492 9.78
CR-V 1602 8.93
Civic 1192 11.90
Ridgeline 2045 6.38

7. W The relative density p of air was measured at various altitudes h. The results
were:

h(km) || 0 | 1.525 | 3.050 | 4.575 6.10 7.625 9.150
0 1| 0.8617 | 0.7385 | 0.6292 | 0.5328 | 0.4481 | 0.3741

Use a quadratic least-squares fit to determine the relative air density at & = 10.5
km. (This problem was solved by interpolation in Problem 20, Problem Set 3.1.)

8. B Kinematic viscosity u; of water varies with temperature T as shown in the
table. Determine the cubic that best fits the data, and use it to compute ;. at
T = 10°, 30°, 60°, and 90°C. (This problem was solved in Problem 19, Problem
Set 3.1 by interpolation.)

T (°Q) 0 21.1 | 37.8 54.4 71.1 87.8 100
wr 1073 m2/s) || 1.79 | 1.13 | 0.696 | 0.519 | 0.338 | 0.321 | 0.296

9. W Fitastraightline and a quadratic to the data

X 1.0 2.5 3.5 4.0 1.1 1.8 2.2 3.7
y || 6.008 | 15.722 | 27.130 | 33.772 | 5.257 | 9.549 | 11.098 | 28.828

Which is a better fit?
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10. W The table displays thermal efficiencies of some early steam engines’. Deter-
mine the polynomial that provides the best fit to the data and use it to predict
the thermal efficiency in the year 2000.

11.

12.

13.

14.

15.

’ Year H Efficiency (%) Type
1718 0.5 Newcomen
1767 0.8 Smeaton
1774 1.4 Smeaton
1775 2.7 Watt
1792 4.5 Watt
1816 7.5 Woolf compound
1828 12.0 Improved Cornish
1834 17.0 Improved Cornish
1878 17.2 Corliss compound
1906 23.0 Triple expansion

B The table shows the variation of relative thermal conductivity k of sodium with
temperature T. Find the quadratic that fits the data in the least-squares sense.

T (°Q)

79 190

357 524 690

k

1.00 | 0.932

0.839 | 0.759 | 0.693

Let f(x) = ax? be the least-squares fit of the data (x;, y;),i=0, 1, ..., n, and let
F(x) =Ina + bln x be the least-squares fit of (In x;, In ;) — see Table 3.3. Prove
that R; =~ r;/y;, where the residuals are r; = y; — f(x;) and R; = In y; — F(x;). As-
sume thatr; < y;.
Determine a and b for which f(x) = a sin(wx/2) + b cos(r x/2) fits the following
data in the least-squares sense.

X

-0.5

—0.19 0.02 0.20 0.35

0.50

y

—3.558

—2.874 | —1.995 | —1.040 | —0.068

0.677

Determine a and b so that f(x) = ax? fits the following data in the least-squares

sense.

X

0.5 1.0

1.5 2.0 2.5

Y

0.49 | 1.60

3.36 | 6.44 | 10.16

Fit the function f(x) = axeb™ to the data and compute the standard deviation.

X

0.5 1.0

1.5 2.0 2.5

y

0.541 | 0.398

0.232 | 0.106 | 0.052

7 Source: Singer, C., Holmyard, E.J., Hall, A.R., and Williams, T.H., A History of Technology, Oxford
University Press, New York, 1958.
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16. W The intensity of radiation of a radioactive substance was measured at half-year
intervals. The results were:

t (years) 0 0.5 1 1.5 2 2.5
y 1.000 | 0.994 | 0.990 | 0.985 | 0.979 | 0.977

t (years) 3 3.5 4 4.5 5 5.5
y 0.972 | 0.969 | 0.967 | 0.960 | 0.956 | 0.952

where y is the relative intensity of radiation. Knowing that radioactivity decays
exponentially with time: y(f) = ae P estimate the radioactive half-life of the
substance.

17. Linear regression can be extended to data that depend on two or more variables
(called multiple linear regression). If the dependent variable is z and indepen-
dent variables are x and y, the data to be fitted have the form

X1 | N | a
X2 | V2 | 2
X3 | V3 | %3

Xn | Yn | 2n

Instead of a straight line, the fitting function now represents a plane:
f,yy=a+bx+cy
Show that the normal equations for the coefficients are
n XX XY a Xz
2 Xx; Exl.z XXy b|=| Xxz
Sy Exy Zy? c Yz
18. Use multiple linear regression explained in Problem 17 to determine the function

f,y=a+bx+cy

that fits the data

-]
]
H

0| 0| 1.42
011 1.85
1|0 0.78
210 0.18
211 0.60
212 1.05
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MATLAB Functions

y = interpl(xData,xData,x,method) returns the value of the interpolant y
at point x according to the method specified: method = ’linear’ uses lin-
ear interpolation between adjacent data points (this is the default); method =
’spline’ carries out cubic spline interpolation. If x is an array, y is computed
for all elements of x.

a = polyfit(xData,yData,m) returns the coefficients a of a polynomial of de-
gree m that fits the data points in the least-squares sense.

y = polyval(a,x) evaluates a polynomial defined by its coefficients a at point x.
If x is an array, y is computed for all elements of x.

s = std(x) returns the standard deviation of the elements of array x. If x is a ma-
trix, s is computed for each column of x.

xbar = mean(x) computes the mean value of the elements of x. If x is a matrix,
xbar is computed for each column of x.

Linear forms can be fitted to data by setting up the overdetermined equations in
Eq. (3.22)

Fa=y

and solving them with the command a = F\y (recall that for overdetermined equa-
tions the backslash operator returns the least-squares solution). Here is an illustra-
tion how to fit

fx) =a1 +aze* + azxe™

to the data in Example 3.11:

xData = [1.2; 2.8; 4.3; 5.4; 6.8; 7.0]1;

yData = [7.5; 16.1; 38.9; 67.0; 146.6; 266.2];
F = ones(length(xData),3);

F(:,2) = exp(xData(:));

F(:,3) = xData(:).*exp(-xData(:));

a = F\yData
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Find the solutions of f(x) = 0, where the function fis given

Introduction

A common problem encountered in engineering analysis is this: given a function
f(x), determine the values of x for which f(x) = 0. The solutions (values of x) are
known as the roofs of the equation f(x) = 0, or the zeros of the function f(x).

Before proceeding further, it might be helpful to review the concept of a function.
The equation

y=fx)

contains three elements: an input value x, an output value y, and the rule f for com-
puting y. The function is said to be given if the rule f is specified. In numerical com-
puting the rule is invariably a computer algorithm. It may be an expression, such as

f(x) = cosh(x) cos(x) — 1

or a complex algorithm containing hundreds or thousands of lines of code. As long
as the algorithm produces an output y for each input x, it qualifies as a function.

The roots of equations may be real or complex. The complex roots are seldom
computed, since they rarely have physical significance. An exception is the polyno-
mial equation

arx" 4+ ax" ' 4 Fapx+ap, =0

where the complex roots may be meaningful (as in the analysis of damped vibra-
tions, for example). For the time being, we will concentrate on finding the real roots
of equations. Complex zeros of polynomials are treated near the end of this chapter.

In general, an equation may have any number of (real) roots, or no roots at all.
For example,

sinx—x=0
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4.2 Incremental Search Method

has a single root, namely, x = 0, whereas
tanx —x =0

has an infinite number of roots (x = 0, +4.493, £7.725, ...).

All methods of finding roots are iterative procedures that require a starting point,
that is, an estimate of the root. This estimate can be crucial; a bad starting value may
fail to converge, or it may converge to the “wrong” root (a root different from the one
sought). There is no universal recipe for estimating the value of a root. If the equa-
tion is associated with a physical problem, then the context of the problem (physical
insight) might suggest the approximate location of the root. Otherwise, the function
must be plotted (a rough plot is often sufficient), or a systematic numerical search for
the roots can be carried out. One such search method is described in the next section.

It is highly advisable to go a step further and bracket the root (determine its lower
and upper bounds) before passing the problem to a root finding algorithm. Prior
bracketing is, in fact, mandatory in the methods described in this chapter.

The number of iterations required to reach the root depends largely on the in-
trinsic order of convergence of the method. Letting Ey be the error in the computed
root after the kth iteration, an approximation of the error after the next iteration has
the form

Ery1 = CEL lc] <1

The order of convergence is determined by m. If m = 1, then the method is said to
converge linearly. Methods for which m > 1 are called superlinearly convergent. The
best methods display quadratic convergence (m = 2).

Incremental Search Method

The approximate locations of the roots are best determined by plotting the function.
Often a very rough plot, based on a few points, is sufficient to give us reasonable start-
ing values. Another useful tool for detecting and bracketing roots is the incremental
search method. It can also be adapted for computing roots, but the effort would not
be worthwhile, since other methods described in this chapter are more efficient for
that.

The basic idea behind the incremental search method is simple: if f(x;) and f(x,)
have opposite signs, then there is at least one root in the interval (x;, x3). If the inter-
val is small enough, it is likely to contain a single root. Thus the zeros of f(x) can be
detected by evaluating the function at intervals Ax and looking for change in sign.

There are a couple of potential problems with the incremental search method:

e Itis possible to miss two closely spaced roots if the search increment Ax is larger
than the spacing of the roots.
e A double root (two roots that coincide) will not be detected.
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Figure 4.1. Plot of tan x.

e Certain singularities (poles) of f(x) can be mistaken for roots. For example,
f(x) = tan x changes sign at x = :I:%nn, n=1,3,5,...,asshownin Fig. 4.1. How-
ever, these locations are not true zeros, since the function does not cross the
X-axis.

B rootsearch

The function rootsearch looks for a zero of the function f(x) in the interval (a, b).
The search starts at a and proceeds in steps dx toward b. Once a zero is detected,
rootsearch returns its bounds (x1,x2) to the calling program. If a root was not
detected, x1 = x2 = NaN is returned (in MATLAB NaN stands for “not a number”).
After the first root (the root closest to a) has been bracketed, rootsearch can be
called again with a replaced by x2 in order to find the next root. This can be repeated
as long as rootsearch detects a root.

function [x1,x2] = rootsearch(func,a,b,dx)

% Incremental search for a root of f(x).

% USAGE: [x1,x2] = rootsearch(func,a,d,dx)

% INPUT:

% func = handle of function that returns f(x).
% a,b = limits of search.

% dx
% OUTPUT:

% x1,x2 = bounds on the smallest root in (a,b);

search increment.

% set to NaN if no root was detected
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x1l = a; f1
x2 = a + dx; f2
while f1*f2 > 0.0
if x1 >=Db
x1 = NaN; x2

feval (func,x1);
feval (func,x2);

NaN; return

end
x1 = x2; fl1 = £2;
x2 = x1 + dx; f2 = feval(func,x2);
end
EXAMPLE 4.1
Use incremental search with Ax = 0.2 to bracket the smallest positive zero of f(x) =
x3 —10x% + 5.

Solution We evaluate f(x) at intervals Ax = 0.2, staring at x = 0, until the function
changes its sign (value of the function is of no interest to us; only its sign is relevant).
This procedure yields the following results:

X f(x)
0.0 | 5.000
0.2 | 4.608
0.4 | 3.464
0.6 | 1.616
0.8 | —0.888

From the sign change of the function, we conclude that the smallest positive zero lies
between x = 0.6 and x = 0.8.

Method of Bisection

After a root of f(x) = 0 has been bracketed in the interval (x;, x2), several methods
can be used to close in on it. The method of bisection accomplishes this by succes-
sively halving the interval until it becomes sufficiently small. This technique is also
known as the interval halving method. Bisection is not the fastest method available
for computing roots, but it is the most reliable. Once a root has been bracketed, bi-
section will always close in on it.

The method of bisection uses the same principle as incremental search: if there
is a root in the interval (x;, x2), then f(x;) - f(x2) < 0. In order to halve the interval,
we compute f(x3), where x3 = %(xl + Xp) is the mid-point of the interval. If f(x)-
f(x3) < 0, then the root must be in (x,, x3) and we record this by replacing the origi-
nal bound x; by x3. Otherwise, the root lies in (x;, x3), in which case x;, is replaced by
x3. In either case, the new interval (x;, x,) is half the size of the original interval. The
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bisection is repeated until the interval has been reduced to a small value ¢, so that

X2 — x| <¢

It is easy to compute the number of bisections required to reach a prescribed
e. The original interval Ax is reduced to Ax/2 after one bisection, Ax/2? after two
bisections, and after n bisections it is Ax/2". Setting Ax/2" = ¢ and solving for n,

we get

_In(lAx| /e)
a In2

4.1)

Clearly, the method of bisection converges linearly, since the error behaves as Ej1 =

Er/2.

B bisect

This function uses the method of bisection to compute the root of f(x) = 0 that is
known to lie in the interval (x1,x2). The number of bisections n required to re-
duce the interval to tol is computed from Eq. (4.1). The input argument filter
controls the filtering of suspected singularities. By setting filter = 1, we force the
routine to check whether the magnitude of f(x) decreases with each interval halv-
ing. If it does not, the “root” may not be a root at all, but a singularity, in which case

root

filter 0.

function root
%
%
%
%
%
%
%
%
%

USAGE:
INPUT:
func
x1,x2
filter
tol
OUTPUT:

root

root

zero of

if
if
fi
if
f2
if
if

nargin < 5; tol
nargin < 4;
= feval(func,x1l)

fl == 0.0; root

f2 == 0.0;
f1*£f2 > 0;

error(’Root is

root

singularity filter:

filter = 0;

feval (func,x2);

bisect(func,x1,x2,filter,tol)
Finds a bracketed zero of f(x) by bisection.
bisect(func,x1,x2,filter,tol)

handle of function that returns f(x).

0 off (default),

f(x),

1.0e4*eps; end

end

x1; return; end

x2; return; end

not bracketed in (x1,x2)’)

NaN is returned. Since this feature is not always desirable, the default value is

limits on interval containing the root.

1 on.

error tolerance (default is 1.0e4*eps).

or NaN if singularity suspected.
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end
n = ceil(log(abs(x2 - x1)/tol)/log(2.0));
for i = 1:n
x3 = 0.5*(x1 + x2);
f3 = feval(func,x3);
if(filter == 1) & (abs(f3) > abs(fl))...
& (abs(f3) > abs(f2))
root = NaN; return
end
if £f3 == 0.0
root = x3; return
end
if f2*f3 < 0.0

x1 = x3; f1 £3;

else
x2 = x3; f2

end

f3;

end
root = (x1 + x2)/2;

EXAMPLE 4.2
Use bisection to find the root of f(x) = x® — 10x? 4+ 5 = 0 that lies in the interval
(0.6, 0.8).

Solution The best way to implement the method is to use the table shown be-
low. Note that the interval to be bisected is determined by the sign of f(x), not its

magnitude.

X f(x) Interval
0.6 1.616 —
0.8 —0.888 (0.6, 0.8)
(0.6 +0.8)/2=0.7 0.443 (0.7,0.8)
(0.840.7)/2 =0.75 —0.203 (0.7,0.75)
(0.740.75)/2 = 0.725 0.125 (0.725, 0.75)
(0.75+0.725)/2 = 0.7375 —0.038 (0.725,0.7375)
(0.725 4 0.7375)/2 = 0.73125 0.044 | (0.7375,0.73125)
(0.7375 4 0.73125) /2 = 0.73438 0.003 | (0.7375,0.73438)
(0.7375 + 0.73438) /2 = 0.73594 —0.017 | (0.73438, 0.73594)
(0.73438 4+ 0.73594) /2 = 0.73516 | —0.007 | (0.73438, 0.73516)
(0.73438 + 0.73516)/2 = 0.73477 | —0.002 | (0.73438, 0.73477)
(0.73438 + 0.73477)/2 = 0.73458 0.000 —

The final result x = 0.7346 is correct within four decimal places.
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EXAMPLE 4.3
Find all the zeros of f(x) = x — tan x in the interval (0, 20) by the method of bisection.
Utilize the functions rootsearch and bisect.

Solution Note that tan x is singular and changes sign at x = 7 /2, 37/2, .... To pre-
vent bisect from mistaking these point for roots, we set filter = 1. The closeness
of roots to the singularities is another potential problem that can be alleviated by us-
ing small Ax in rootsearch. Choosing Ax = 0.01, we arrive at the following program:

% Example 4.3 (root finding with bisection)
func = @(x) (x - tan(x));
a=0.0; b=20.0; dx = 0.01;

nroots = 0;
while 1
[x1,x2] = rootsearch(func,a,b,dx);

if isnan(xl)
break
else
a = X2;
x = bisect(func,x1,x2,1);
if “isnan(x)

nroots = nroots + 1;

root(nroots) = x;
end
end
end
root
Running the program resulted in the output
>> root =

0 4.4934 7.7253 10.9041 14.0662 17.2208

Methods Based on Linear Interpolation
Secant and False Position Methods

The secant and the false position methods are closely related. Both methods require
two starting estimates of the root, say, x; and x,. The function f(x) is assumed to be
approximately linear near the root, so that the improved value x; of the root can be
estimated by linear interpolation between x; and x,.

Referring to Fig. 4.2, we obtain from similar triangles (shaded in the figure)

fo_fi-b

X3 — X2 Xo — X1
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Figure 4.2. Linear interpolation.

where we used the notation f; = f(x;). This yields for the improved estimate of
the root

Xo — X1
LE-h

The false position method (also known as regula falsi) requires x; and x, to
bracket the root. After the improved root is computed from Eq. (4.2), either x; or x;
is replaced by x3. If f5 has the same sign as f;, we let x; < x3; otherwise we choose
X, < x3.Inthis manner, the root is always bracketed in (x;, x,). The procedure is then
repeated until convergence is obtained.

The secant method differs from the false position method in two details. (1) It
does not require prior bracketing of the root; and (2) the oldest prior estimate of the
root is discarded; that is, after x5 is computed, we let x; < X2, x» < x3.

The convergence of the secant method can be shown to be superlinear, the error
behaving as Ex1 = cE,lc-Glg'-'(the exponent 1.618... is the “golden ratio”). The precise
order of convergence for false position method is impossible to calculate. Generally,
it is somewhat better than linear, but not by much. However, since the false position
method always brackets the root, it is more reliable. We will not dwell further into
these methods, because both of them are inferior to Ridder’s method as far as the
order of convergence is concerned.

X3 = Xp — fg (42)

Ridder’s Method

Ridder’s method is a clever modification of the false position method. Assuming that
the root is bracketed in (x;, x), we first compute f; = f(x3), where x3 is the midpoint
of the bracket, as indicated in Fig. 4.3(a). Next, we the introduce the function

g(x) = flx)e e (a)

where the constant Q is determined by requiring the points (x, 1), (%, &), and
(x3, g3) to lie on a straight line, as shown in Fig. 4.3(b). As before, the notation we use
is g = g(x;). The improved value of the root is then obtained by linear interpolation
of g(x) rather than f(x).

e b (55kw annd - e 35900 - I e ol
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Figure 4.3. Mapping used in Ridder’s method.

Let us now look at the details. From Eq. (a) we obtain

g=f &=£" g=fe? (b)
where h = (x; — x1)/2. The requirement that the three points in Fig. 4.3b lie on a
straight line is g3 = (g1 + &)/2, or

1
fe"Q = E(fl + fe2"Q)

which is a quadratic equation in ¢”?. The solution is

o BEVE - Rf

(©

f2
Linear interpolation based on points (x, g) and (x3, g3) now yields for the im-
proved root
X3 — X1 o X3 — X1
X1 =X3— g =x3— fze"N—————
&8 fe" = fi

where in the last step we utilized Eqgs. (b). As the final step, we substitute e"Q from
Eq. (c), and obtain after some algebra

5
= fifs
It can be shown that the correct result is obtained by choosing the plus sign if f; —
f2 > 0, and the minus sign if f; — f, < 0. After the computation of x4, new brackets

are determined for the root and Eq. (4.3) is applied again. The procedure is repeated
until the difference between two successive values of x; becomes negligible.

Xy = X3 £ (X3 — x1) (4.3)

Ridder’s iterative formula in Eq. (4.3) has a very useful property: if x; and
x, straddle the root, then x, is always within the interval (x;, x;). In other words,
once the root is bracketed, it stays bracketed, making the method very reliable. The
downside is that each iteration requires two function evaluations. There are compet-
itive methods that get by with only one function evaluation per iteration (e.g., Brent’s
method) but they are more complex with elaborate book-keeping.

Ridder’s method can be shown to converge quadratically, making it faster than
either the secant or the false position method. It is the method to use if the derivative
of f(x) is impossible or difficult to compute.
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B ridder
The following is the source code for Ridder’s method:

function root = ridder(func,xl,x2,tol)

% Ridder’s method for computing the root of f(x) = 0
% USAGE: root = ridder(func,a,b,tol)

% INPUT:

% func = handle of function that returns f(x).

% x1,x2 = limits of the interval containing the root.

% tol = error tolerance (default is 1.0e6*eps).

% OUTPUT:

% root = zero of f(x) (root = NaN if failed to converge).

if nargin < 4; tol = 1.0e6*eps; end
fl = func(xl);

if £f1 == 0; root = x1; return; end
f2 = func(x2);
if £f2 == 0; root = x2; return; end

if f1*f2 > 0
error(’Root is not bracketed in (a,b)’)

end

for i = 0:30
% Compute improved root from Ridder’s formula
x3 = 0.5*(x1 + x2); f3 = func(x3);

if £f3 == 0; root = x3; return; end
s = sqrt(f3°2 - f1*£f2);
if s == 0; root = NaN; return; end

dx = (x3 - x1)*f3/s;

if (f1 - f2) < 0; dx = -dx; end

x4 = x3 + dx; f4 = func(x4);

% Test for convergence

if i > 0;
if abs(x4 - x01ld) < tol*max(abs(x4),1.0)

root = x4; return

end

end

x01d = x4;

% Re-bracket the root

if £3*f4 > 0
if f1*f4 < 0; x2 = x4; f2 = f4;
else x1 = x4; f1 = f4;
end

else
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x1 = x3; x2 = x4; f1 = £f3; £f2 = f4;
end
end
root = NaN;

EXAMPLE 4.4
Determine the root of f(x) = x> — 10x? +5 = 0 that lies in (0.6, 0.8) with Ridder’s
method.

Solution The starting points are
xn =06 fi=06%—-10(0.6)2+5=1.6160
X, =08  f,=0.8°—10(0.8)>+5= —0.8880
First iteration Bisection yields the point
x3=07 f3=07°-10(0.7)* +5 = 0.4430
The improved estimate of the root can now be computed with Ridder’s formula:
s = \/m = \/0.43302 —1.6160(—0.8880) = 1.2738
f

Xy =x3 %+ (X3 — xl)?s
Because f; > f> we must use the plus sign. Therefore,
0.4430
=0.74 (0.7 - 0.6) ——— = 0.7348
=074 12738

fi =0.7348% — 10(0.7348)> + 5 = —0.0026
As the root clearly lies in the interval (x3, x4), we let

X1 < x3=0.7 fi < f3=0.4430

Xy < x4 =0.7348  fo < f; = —0.0026

which are the starting points for the next iteration.

Second iteration

X3 = 0.5(x; + x2) = 0.5(0.7 +0.7348) = 0.7174

f3=0.7174% —10(0.717 4)> + 5 = 0.2226

s= ,/f32 - fAf= V/0.22262 — 0.4430(—0.0026) = 0.2252

Xy = X3 £ (x3 — x1)§
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Since f; > f, we again use the plus sign, so that

0.2226
Xy =0.71744(0.7174 — 0.7) ———= = 0.7346
0.2252

fa = 0.7346% — 10(0.7346) + 5 = 0.0000
Thus the root is x = 0.7346, accurate to at least four decimal places.

EXAMPLE 4.5
Compute the zero of the function

1 1

f(x) = (x —0.3)2 +0.01 N (x—0.8)2+0.04

Solution The M-file for the function is

function vy = fex4_5(x)

% Function used in Example 4.5

vy =1/((x - 0.3)"2 + 0.01)...
- 1/((x - 0.8)72 + 0.04);

We obtain the approximate location of the root by plotting the function. The fol-
lowing commands produce the plot shown:

>> fplot(@fex4_5,[-2,3])
>> grid on

100

. |
. |
. /

-2 -1 0 1 2 3
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Itis evident that the root of f(x) = 0lies between x = 0.5 and 0.7. We can extract
this root with the command

>> ridder(@fex4_5,0.5,0.7)
The result, which required four iterations, is

ans =
0.5800

Newton-Raphson Method

The Newton-Raphson algorithm is the best-known method of finding roots for a
good reason: it is simple and fast. The only drawback of the method is that it uses the
derivative f’(x) of the function as well as the function f(x) itself. Therefore, Newton—
Raphson method is usable only in problems where f’(x) can be readily computed.

The Newton-Raphson formula can be derived from the Taylor series expansion
of f(x) about x:

fQie) = fOa) + [0 (i — %) + O — x)? (a)

If x;,1 is aroot of f(x) = 0, Eq. (a) becomes
0= flx) + f'(x) (i1 — %) + O(xi1 — x) (b)
Assuming that x; is close to x;;;, we can drop the last term in Eq. (b) and solve for

X;+1. The result is the Newton-Raphson formula

X
X — )
()
Letting x denote the true value of the root, the error in x; is E; = x — x;. It can be
shown that if x;, is computed from Eq. (4.4), the corresponding error is
_ f// (xi) Eg
2f(x)
indicating that Newton-Raphson method converges quadratically (the error is the
square of the error in the previous step). As a consequence, the number of significant

(4.4)

Xit1 =

Ei=

figures is roughly doubled in every iteration, provided that x; is close to the root.
Graphical depiction of the Newton-Raphson formula is shown in Fig. 4.4. The
formula approximates f(x) by the straight line that is tangent to the curve at x;. Thus
X;;+1 is at the intersection of the x-axis and the tangent line.
The algorithm for the Newton-Raphson method is simple and is repeatedly ap-
plied Eq. (4.4), starting with an initial value xy, until the convergence criterion

|Xiy1 — Xi| <&
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Tangent line

()

Figure 4.4. Graphical interpretation
of Newon-Raphson formula.

|
f(x;)
|

Xi+1 / Xi

isreached, ¢ being the error tolerance. Only the latest value of x has to be stored. Here
is the algorithm:

1. Let x be a guess for the root of f(x) = 0.
2. Compute Ax = — f(x)/f" (x).
3. Let x < x + Ax and repeat steps 2-3 until |Ax| < e.

Although Newton—-Raphson method converges fast near the root, its global con-
vergence characteristics are poor. The reason is that the tangent line is not always
an acceptable approximation of the function, as illustrated in the two examples in
Fig. 4.5. But the method can be made nearly fail-safe by combining it with bisection.

fx) fx)

@) (b)

Figure 4.5. Examples where Newton-Raphson method diverges.

B newtonRaphson

The following safe version of the Newton—-Raphson method assumes that the root to
be computed is initially bracketed in (a,b). The midpoint of the bracket is used
as the initial guess of the root. The brackets are updated after each iteration. If a
Newton—Raphson iteration does not stay within the brackets, it is disregarded and
replaced with bisection. Since newtonRaphson uses the function £(x) as well as
its derivative, function routines for both (denoted by func and dfunc in the listing)
must be provided by the user.

function root = newtonRaphson(func,dfunc,a,b,tol)

% Newton-Raphson method combined with bisection for
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% finding a root of f(x) = 0.
% USAGE: root = newtonRaphson(func,dfunc,a,b,tol)

% INPUT:

% func = handle of function that returns f(x).

% dfunc = handle of function that returns f’(x).

% a,b = brackets (limits) of the root.

% tol = error tolerance (default is 1.0e6*eps).

% OUTPUT:

% root = zero of f(x) (root = NaN if no convergence).

if nargin < 5; tol = 1.0e6*eps; end
fa = feval(func,a); fb = feval(func,b);
if fa == 0; root = a; return; end
if fb == 0; root = b; return; end
if fa*fb > 0.0
error(’Root is not bracketed in (a,b)’)
end
x = (a + b)/2.0;
for i = 1:30
fx = feval(func,x);
if abs(fx) < tol; root = x; return; end
% Tighten brackets on the root
if fa*fx < 0.0; b = x;
else; a = x;
end
% Try Newton-Raphson step
dfx = feval(dfunc,x);
if abs(dfx) == 0; dx = b - a;
else; dx = -fx/dfx;
end
X = X + dx;
% If x not in bracket, use bisection
if (b - x)*(x - a) < 0.0
dx = (b - a)/2.0;
X = a + dx;
end
% Check for convergence
if abs(dx) < tol*max(b,1.0)
root = x; return
end
end
root = NaN
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4.5 Newton-Raphson Method

EXAMPLE 4.6
A root of f(x) = x*> —10x? 4+ 5 = 0 lies close to x = 0.7. Compute this root with the
Newton—-Raphson method.

Solution The derivative of the function is f’(x) = 3x?> — 20x, so that the Newton—
Raphson formula in Eq. (4.4) is

f ¥ -10x4+5 2x°-10x* -5

X X — =X =
RERTP) 3x% — 20x X 3x — 20)

It takes only two iteration to reach five decimal place accuracy:

2(0.7)3 —10(0.7)2 =5
0.7 [3(0.7) — 20]

=0.73536

2(0.73536)% — 10(0.73536)2 — 5

=0.73460
0.73536[3(0.73536) — 20]

EXAMPLE 4.7
Find the smallest positive zero of

f(x) = x* — 6.4x° + 6.45x° 4 20.538x — 31.752

Solution

60
i i |
L 1 1
40 —-------- :r fffffffff 7: ffffffffffffffffffffffffff
I | |
- | |
- | | |
£ 20p— b e Ry
: | |
o | |
0 ,,,,,,,,}, ,,,,,,,, S ) O~
| |
| |
|
| |
20 -5~ S — -
| | | i ]
[ | | | | i
_40 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1
0 1 2 3 4 5

Inspecting the plot of the function, we suspect that the smallest positive zero is a
double root at about x = 2. Bisection and Ridder’s method would not work here, since
they depend on the function changing its sign at the root. The same argument applies
to the function newtonRaphson. But there is no reason why the primitive Newton—
Raphson method should not succeed. The following function is an implementation
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of the method. It returns the number of iterations in addition to the root:

function [root,numIter] = newton_simple(func,dfunc,x,tol)

% Simple version of Newton--Raphson method used in Example 4.7.

if nargin < 5; tol = 1.0e6%eps; end
for i = 1:30
dx = -feval(func,x)/feval(dfunc,x);
X = X + dx;
if abs(dx) < tol
root = x; numlter = i; return
end
end
root = NaN

The program that calls the above function is

% Example 4.7 (Newton--Raphson method)

func = @(x) (x4 - 6.4*%*x"3 + 6.45*x"2 + 20.538*x - 31.752);
dfunc = @(x) (4*x"3 - 19.2*x"2 + 12.9*x + 20.538);

xStart = 2;

[root,numIter] = newton_simple(func,dfunc,xStart)

Here are the results:

>> [root,numIter] = newton_simple(@fex4_7,@dfex4_7,2.0)
root =

2.1000
numIter =

35

It can be shown that near a multiple root the convergence of the Newton—
Raphson method is linear, rather than quadratic, which explains the large number
of iterations. Convergence to a multiple root can be speeded up by replacing the
Newton-Raphson formula in Eq. (4.4) with

fx)
)

Xit1 = X —m

where m is the multiplicity of the root (m = 2 in this problem). After making the
change in the above program, we obtained the result in five iterations.
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Systems of Equations
Introduction

Up to this point, we confined our attention to solving the single equation f(x) = 0.
Let us now consider the n-dimensional version of the same problem, namely,

or, using scalar notation
.fl(xlrx2y -..,xn) =0
folxy, X, ..., X)) =0
X1, X2, 000, %) =0

The solution of n simultaneous, nonlinear equations is a much more formidable task
than finding the root of a single equation. The trouble is the lack of a reliable method
for bracketing the solution vector x. Therefore, we cannot provide the solution algo-
rithm with a guaranteed good starting value of x, unless such a value is suggested by
the physics of the problem.

The simplest, and the most effective means of computing x is the Newton-
Raphson method. It works well with simultaneous equations, provided that it is sup-
plied with a good starting point. There are other methods that have better global
convergence characteristics, but all of them are variants of the Newton-Raphson
method.

Newton-Raphson Method

In order to derive the Newton—-Raphson method for a system of equations, we start
with the Taylor series expansion of f;(x) about the point x:

fix+ AX) = fix) + Z ;—)]ijj + 0(AX?) (4.5a)
j=1

Dropping terms of order Ax?, we can write Eq. (4.5a) as
fx+ Ax) = fx) + J(x) Ax (4.5b)

where J(x) is the Jacobian matrix (of size n x n) made up of the partial derivatives

Jij = —

b, (4.6)

Note that Eq. (4.5b) is a linear approximation (vector Ax being the variable) of the
vector-valued function f in the vicinity of point x.
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Let us now assume that x is the current approximation of the solution of
fx) = 0, and let x + Ax be the improved solution. To find the correction Ax, we set
fx + Ax) = 0in Eq. (4.5b). The result is a set of linear equations for Ax:

Jx)Ax = —f(x) 4.7)

The following steps constitute Newton—-Raphson method for simultaneous, non-
linear equations:

Estimate the solution vector x.

Evaluate f(x).

Compute the Jacobian matrix J(x) from Eq. (4.6).

Set up the simultaneous equations in Eq. (4.7) and solve for Ax.
Letx < x + Ax and repeat steps 2-5.

@ wh e

The above process is continued until |Ax| < ¢, where ¢ is the error tolerance. As
in the one-dimensional case, success of the Newton-Raphson procedure depends
entirely on the initial estimate of x. If a good starting point is used, convergence to
the solution is very rapid. Otherwise, the results are unpredictable.

Because analytical derivation of each df;/9x; can be difficult or impractical, it is
preferable to let the computer calculate the partial derivatives from the finite differ-
ence approximation

A fix+eh) - fix)
8.7(,']' h

(4.8)

where h is a small increment of applied to x; and e; represents a unit vector in the
direction of x;. This formula can be obtained from Eq. (4.5a) after dropping the terms
of order Ax* and setting Ax = e;h. By using the finite difference approximation, we
also avoid the tedium of typing the expressions for df;/9x; into the computer code.

B newtonRaphson?2

This function is an implementation of the Newton-Raphson method. The nested
function jacobian computes the Jacobian matrix from the finite difference approx-
imation in Eq. (4.8). The simultaneous equations in Eq. (4.7) are solved by Gauss
elimination with row pivoting using the function gaussPivot listed in Section 2.5.
The function subroutine func that returns the array f(x) must be supplied by the
user.

function root = newtonRaphson2(func,x,tol)
% Newton-Raphson method of finding a root of simultaneous
% equations fi(x1l,x2,...,xn) =0, i =1,2,...,n.

% USAGE: root = newtonRaphson2(func,x,tol)
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% INPUT:

% func = handle of function that returns[fl,f2,...,fn].

% x = starting solution vector [x1,x2,...,xn].

% tol = error tolerance (default is 1.0e4d*eps).

% OUTPUT:

% root = solution vector.

if nargin == 2; tol = 1.0e4*eps; end

if size(x,1) == 1; x = x’; end % x must be column vector

for i = 1:30
[jac,f0] = jacobian(func,x);
if sgrt(dot(f0,f0)/length(x)) < tol
root = X; return
end
dx = jac\(-f0);
X = X + dx;
if sgrt(dot(dx,dx)/length(x)) < tol*max(abs(x),1.0)
root = X; return
end
end

error(’Too many iterations’)

function [jac,f0] = jacobian(func,x)
% Returns the Jacobian matrix and f(x).
h = 1.0e-4;
n = length(x);
jac = zeros(n);
f0 = feval(func,x);
for i =1:n
temp = x(i);
x(i) = temp + h;
fl1 = feval(func,x);
x(i) = temp;
jac(:,1i) = (f1 - £0)/h;

end

Note that the Jacobian matrix J(x) is recomputed in each iterative loop. Since
each calculation of J(x) involves n + 1 evaluations of f(x) (n is the number of equa-
tions), the expense of computation can be high depending on n and the complexity
of f(x). Fortunately, the computed root is rather insensitive to errors in J(x). Therefore,
it is often possible to save computer time by computing J(x) only in the first iteration
and neglecting the changes in subsequent iterations. This will work provided that the
initial x is sufficiently close to the solution.
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EXAMPLE 4.8
Determine the points of intersection between the circle x?> + y*> = 3 and the hyper-
bola xy = 1.

Solution The equations to be solved are

fik, ) =x*+y*-3=0 (@
L, y)=xy—-1=0 (b)
The Jacobian matrix is
afi/ox of1/dy 2x 2y
I ) = =
t0.9) |:8fz/8x 8f2/8yi| |: y o x i|

Thus the linear equations J(x)Ax = —f(x) associated with the Newton-Raphson

method are
2x 2y || Ax —x*—y*+3
= (©
y X Ay —xy+1

By plotting the circle and the hyperbola, we see that there are four points of in-
tersection. It is sufficient, however, to find only one of these points, as the others can
be deduced from symmetry. From the plot, we also get rough estimate of the coordi-
nates of an intersection point: x = 0.5, y = 1.5, which we use as the starting values.

The computations then proceed as follows.

Firstiteration Substituting x = 0.5, y = 1.5 in Eq. (c), we get

1.0 3.0||Ax]| |0.50
1.5 05| Ay | 025
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the solution of which is Ax = Ay = 0.125. Therefore, the improved coordinates of the
intersection point are

x=0.5+0.125=0.625 y=15+0.125=1.625

Second iteration Repeating the procedure using the latest values of x and y, we

obtain
1.250 3.250 Ax | | —0.031250
1.625 0.625 Ay | —0.015625
which yields Ax = Ay = —0.00694. Thus

x =0.625 - 0.00694 = 0.618 06 y=1.625—-0.00694 = 1.618 06

Third iteration Substitution of the latest x and y into Eq. (c) yields
[123612 323612} [Ax} B [—0000116}
1.61806 0.61806 Ay —0.000058
The solution is Ax = Ay = —0.00003, so that
x =0.61806 — 0.00003 = 0.61803

y =1.61806 — 0.00003 =1.61803

Subsequent iterations would not change the results within five significant fig-
ures. Therefore, the coordinates of the four intersection points are
+(0.61803, 1.61803) and =+ (1.61803, 0.61803)

Alternate solution If there are only a few equations, it may be possible to eliminate
all but one of the unknowns. Then we would be left with a single equation which can
be solved by the methods described in Sections 4.2-4.5. In this problem, we obtain
from Eq. (b)

_1
Y=3

which upon substitution into Eq. (a) yields x* 4+ 1/x> —3 =0, or
x*—3x2+1=0

The solutions of this biquadratic equation: x = £0.61803 and +1.618 03 agree with
the results obtained by the Newton—-Raphson method.

EXAMPLE 4.9
Find a solution of

sinx+)*+Inz—-7=0
3x+2V—-2+1=0
X+y+z-5=0

using newtonRaphson?2. Start with the point (1, 1, 1).
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Solution Letting x = x;, ¥ = x», and z = x3, the M-file defining the function array
fx) is

function y = fex4_9(x)
% Function used in Example 4.9
y = [sin(x(1)) + x(2)"2 + log(x(3)) - 7;
3*x(1) + 27°x(2) - x(3)73 + 1;
x(1) + x(2) + x(3) - 5]1;

The solution can now be obtained with the single command

>> newtonRaphson2(@fex4_9,[1;1;1])

which results in

ans =
0.5991
2.3959
2.0050

Hence the solution is x = 0.5991, y = 2.3959, and z = 2.0050.

PROBLEM SET 4.1

1. Use the Newton-Raphson method and a four-function calculator (+ — x -+ oper-
ations only) to compute ~/75 with four significant figure accuracy.

2. Find the smallest positive (real) root of x* —3.23x? — 5.54x + 9.84 = 0 by the
method of bisection.

3. The smallest positive, nonzero root of cosh xcosx — 1 = 0 lies in the interval
(4, 5). Compute this root by Ridder’s method.

4. Solve Problem 3 by the Newton-Raphson method.

5. Aroot of the equation tan x — tanh x = Oliesin (7.0, 7.4). Find this root with three
decimal place accuracy by the method of bisection.

6. Determine the two roots of sin x + 3 cos x — 2 = 0 that lie in the interval (-2, 2).
Use the Newton—Raphson method.

7. Solve Problem 6 using the secant method.

8. Draw a plot of f(x) = coshxcosx — 1 intherange 0 < x < 10. (a) Verify from the
plot that the smallest positive, nonzero root of f(x) = 0 lies in the interval (4, 5).
(b) Show graphically that the Newton—-Raphson formula would not converge to
this root if it is started with x = 4.

9. The equation x3 — 1.2x? — 8.19x + 13.23 = 0 has a double root close to x = 2.
Determine this root with the Newton-Raphson method within four decimal
places.
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10. W Write a program that computes all the roots of f(x) = 0 in a given interval with
Ridder’s method. Utilize the functions rootsearch and ridder. You may use
the program in Example 4.3 as a model. Test the program by finding the roots of
xsinx+3cosx — x =0in (-6, 6).

11. ® Solve Problem 10 with the Newton-Raphson method.

12. W Determine all real roots of x* + 0.9x% — 2.3x% +3.6x — 25.2 = 0.

13. ®m Compute all positive real roots of x* + 2x3 — 7x*> +3 = 0.

14. M Find all positive, nonzero roots of sinx — 0.1x = 0.

15. W The natural frequencies of a uniform cantilever beam are related to the roots
B; of the frequency equation f(8) = cosh 8cos 8 + 1 = 0, where

4 _ .o mL°
Bi = 2 f) £l

fi = ith natural frequency (cps)
m = mass of the beam

L = length of the beam

E = modulus of elasticity

I = moment of inertia of the cross section

Determine the lowest two frequencies of a steel beam 0.9 m long, with a rectan-
gular cross section 25 mm wide and 2.5 mm high. The mass density of steel is
7850 kg/m3 and E = 200 GPa.

16. m

—_———

Length=s -

A steel cable of length s is suspended as shown in the figure. The maximum ten-
sile stress in the cable, which occurs at the supports, is

Omax = 0¢ cosh

where
_rL
o 200

o = tensile stress in the cable at O
y = weight of the cable per unit volume

L = horizontal span of the cable
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The length to span ratio of the cable is related to g by

1

Find o max if y = 77 x 10® N/m3 (steel), L = 1000 m, and s = 1100 m.
17. 1

P—> : <£P

e ——

The aluminum W 310 x 202 (wide flange) column is subjected to an eccentric
axial load P as shown. The maximum compressive stress in the column is given
by the so-called secant formula:

_ ec L |o
Omax = O 1+r7$ec Z E

o = P/A = average stress

where

A = 25800 mm? = cross-sectional area of the column
e = 85 mm = eccentricity of the load
¢ = 170 mm = half depth of the column
r = 142 mm = radius of gyration of the cross section
L = 7100 mm = length of the column

E = 71 x 10° Pa = modulus of elasticity

Determine the maximum load P that the column can carry if the maximum
stress is not to exceed 120 x 10° Pa.

18. m
hy Q—- h
_/__X‘_
1
H
Bernoulli’s equation for fluid flow in an open channel with a small bump is
2 2

Q + ho = _@ +h+H

2gb* I 2gb*h?
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where
Q = 1.2 m?/s = volume rate of flow
g = 9.81 m/s* = gravitational acceleration
b = 1.8 m = width of channel
hy = 0.6 m = upstream water level
H = 0.075 m = height of bump

h = water level above the bump

Determine h.
19. B The speed v of a Saturn V rocket in vertical flight near the surface of earth can

be approximated by
My

—uln 0 g
Ve e — e~ E

where
u = 2510 m/s = velocity of exhaust relative to the rocket
My = 2.8 x 10° kg = mass of rocket at liftoff
m = 13.3 x 10° kg/s = rate of fuel consumption
g = 9.81 m/s* = gravitational acceleration

t = time measured from liftoff

Determine the time when the rocket reaches the speed of sound (335 m/s).

20. m
P
R 4
Heating at Isothermal
constant volume‘ expansion
A
P -
' T.[Volume reduced T2
by cooling y
Y v,

The figure shows the thermodynamic cycle of an engine. The efficiency of this

engine for monatomic gas is

_ In(L/T) - (1-T/T)
TG/ H+0-4/B)/y -1
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where T is the absolute temperature and y = 5/3. Find T5/ T; that results in 30%
efficiency (n = 0.3).
21. W Gibb’s free energy of one mole of hydrogen at temperature T is

G=—RTIn[(T/T))*"*] ]

where R = 8.31441 J/K is the gas constant and Ty = 4.444 18 K. Determine the

temperature at which G = —10°J.
22. B The chemical equilibrium equation in the production of methanol from CO
and H, is®
_9£)2
§C 7287 _ 49,2
(1-8)3

where & is the equilibrium extent of the reaction. Determine §.

23. W Determine the coordinates of the two points where the circles (x — 2)? + y? = 4
and x? + (y — 3)2 = 4 intersect. Start by estimating the locations of the points
from a sketch of the circles, and then use the Newton-Raphson method to com-
pute the coordinates.

24. W The equations

sinx+3cosy—2=0
cosx—siny+02=0
have a solution in the vicinity of the point (1, 1). Use Newton—-Raphson method
to refine the solution.
25. W Use any method to find allreal solutions of the simultaneous equations
tanx—y =1
cosx—3siny =0
in theregion 0 < x < 1.5.
26. W The equation of a circle is
(x—aP+(y—-b’=FR

where R is the radius and (a, b) are the coordinates of the center. If the coordi-
nates of three points on the circle are

x | 821 | 0.34 5.96
y | 0.00 | 662 | —1.12

determine R, a, and b.

8 From Alberty, R.A., Physical Chemistry, 7th ed., John Wiley & Sons, New York, 1987.
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27. 1

The trajectory of a satellite orbiting the earth is

B C
T 1+ esin(@ + a)

where (R, 6) are the polar coordinates of the satellite, and C, e, and « are con-
stants (e is known as the eccentricity of the orbit). If the satellite was observed at
the following three positions

0 —-30° 0° 30°
R (km) | 6870 | 6728 | 6615

determine the smallest R of the trajectory and the corresponding value of 6.

28. ®
y ///'__‘\\ >
e 45
v,” I
61 m
QJ/0 |

- 300m .|

A projectile is launched at O with the velocity v at the angle 6 to the horizontal.
The parametric equation of the trajectory is

x = (vcoso)t
1, ,
Y= —Egt + (vsin6)t
where t is the time measured from instant of launch, and g = 9.81 m/s? repre-

sents the gravitational acceleration. If the projectile is to hit the target at the 45°
angle shown in the figure, determine v, 6, and the time of flight.
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29. m

The three angles shown in the figure of the four-bar linkage are related by

150 cos 8 + 180 cosf, — 200 cos O3 = 200

150sin6; + 180sinf, — 200sinf3 = 0

Determine ; and 8, when 83 = 75°. Note that there are two solutions.
30. m

The 15-m cable is suspended from A and D and carries concentrated loads at B
and C. The vertical equilibrium equations of joints B and C are

T(—tan#, + tan6;) = 16

T(tan 03 + tan6,) = 20

where T is the horizontal component of the cable force (it is the same in all seg-
ments of the cable). In addition, there are two geometric constraints imposed by
the positions of the supports:

—4sinf; — 6sinf, + 5sinf, = —3

4cos0y +6c0sH, +5c0s03 = 12

Determine the angles 64, 6,, and 03.
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Zeros of Polynomials
Introduction

A polynomial of degree 7 has the form
Py(x) = a1 X" 4 apx" 4+ -+ apXx + ann 4.9)

where the coefficients a; may be real or complex. We will concentrate on polynomi-
als with real coefficients, but the algorithms presented in this section also work with
complex coefficients.

The polynomial equation P,(x) = 0 has exactly n roots, which may be real or
complex. If the coefficients are real, the complex roots always occur in conjugate
pairs (x +ix;, X, — ix;), where x, and x; are the real and imaginary parts, respec-
tively. For real coefficients, the number of real roots can be estimated from the rule of
Descartes:

e The number of positive, real roots equals the number of sign changes in the ex-
pression for P,(x), or less by an even number.

e The number of negative, real roots is equal to the number of sign changes in
P,(—x), or less by an even number.

As an example, consider Ps(x) = x® — 2x?> — 8x + 27. Since the sign changes
twice, P;(x) =0 has either two or zero positive real roots. On the other hand,
P3(—x) = —x® — 2x? + 8x + 27 contains a single sign change; hence, P;(x) possesses
one negative real zero .

The real zeros of polynomials with real coefficients can always be computed by
one of the methods already described. But if complex roots are to be computed, it
is best to use a method that specializes in polynomials. Here we present a method
due to Laguerre, which is reliable and simple to implement. Before proceeding to
Laguerre’s method, we must first develop two numerical tools that are needed in any
method capable of determining the zeros of a polynomial. The first of these is an
efficient algorithm for evaluating a polynomial and its derivatives. The second algo-
rithm we need is for the deflation of a polynomial, that is, for dividing the P,(x) by
x — r, where r is aroot of P,(x) = 0.

Evaluation Polynomials

It is tempting to evaluate the polynomial in Eq. (4.9) from left to right by the following
algorithm (we assume that the coefficients are stored in the array a):

for i 1:n+1

p =p + a(id)*x"(n-i+1)
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k

Since x* is evaluated as x x x x --- x x (k — 1 multiplications), we deduce that

the number of multiplications in this algorithm is
1
1+2+3+---+n-1= En(n—l)

If nis large, the number of multiplications can be reduced considerably if we evaluate
the polynomial from right to left. For an example, take

Pi(x) = a1 x* + apx® + asx® + asx + as
which can be rewritten as
Py(x) = as + x{as + x [as + x (az + xa)]}

We now see that an efficient computational sequence for evaluating the poly-
nomial is

Px) =a

P (x) = a + xR(x)
P(x) =as+ xP(x)
P;(x) =as+ xP(x)

Py(x) = as + x P3(x)

For a polynomial of degree n, the procedure can be summarized as

Ry(x) = ay

B(x) =an+i+x1)i,1(x), l= ]-y 2,...,” (410)

leading to the algorithm

p = a(l);
for i = 1:n
p = p*x + a(i+l)

end

The last algorithm involves only n multiplications, making it more efficient
for n > 3. But computational economy is not the prime reason why this algorithm
should be used. Because the result of each multiplication is rounded off, the proce-
dure with the least number of multiplications invariably accumulates the smallest
roundoff error.

Some root-finding algorithms, including Laguerre’s method, also require eval-
uation of the first and second derivatives of P,(x). From Eq. (4.10) we obtain by
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differentiation
P(x)=0 Px)=P,(x)+xP_,(x), i=12,...,n (4.11a)
P/(x)=0 P'(x)=2P_,x)+xP’',(x), i=12,...,n (4.11b)
W evalPoly

Here is the function that evaluates a polynomial and its derivatives:

function [p,dp,ddp] = evalpoly(a,x)

% Evaluates the polynomial

% p = a(l)*x"n + a(2)*x " (n-1) + ... + a(n+l)
% and its first two derivatives dp and ddp.
% USAGE: [p,dp,ddp] = evalpoly(a,x)

n = length(a) - 1;
p = a(l); dp = 0.0; ddp = 0.0;
for i = 1:n
ddp = ddp*x + 2.0*dp;
dp = dp*x + p;
P = p¥*x + a(i+l);
end

Deflation of Polynomials

After aroot r of P,(x) = 0 has been computed, it is desirable to factor the polynomial
as follows:

Py(x) = (x = 1) P (X) (4.12)

This procedure, known as deflation or synthetic division, involves nothing more than
computing the coefficients of P,_;(x). Since the remaining zeros of P,(x) are also the
zeros of P,_;(x), the root-finding procedure can now be applied to P,_;(x) rather
than P,(x). Deflation thus makes it progressively easier to find successive roots, be-
cause the degree of the polynomial is reduced every time a root is found. Moreover,
by eliminating the roots that have already been found, the chances of computing the
same root more than once are eliminated.
If we let

Pn,1 (X) = blx"’l + ngniz —+ -+ bn,lx + bn
then Eq. (2.12) becomes
X"+ a x4 anX + an

== X"+ bx" 2 + -+ by_1x + by)
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Equating the coefficients of like powers of x, we obtain
b =a by=a,+rby -+ b,=a,+rb, (4.13)

which leads to Horner’s deflation algorithm:

b(1) = a(l);
for i1 = 2:n
b(i) = a(i) + x*b(i-1);

end

Laguerre’s Method

Laquerre’s formulas are not easily derived for a general polynomial P,(x). However,
the derivation is greatly simplified if we consider the special case where the poly-
nomial has a zero at x = r and (n — 1) zeros at x = q. If the zeros were known, this
polynomial can be written as

Px0)=(x—-nNx—q"! (@)

Our problem is now this: given the polynomial in Eq. (a) in the form

1

Pu(x) = a1 X" 4+ ap X" + -+ + apX + ana

determine r (note that g is also unknown). It turns out that the result, which is ex-
act for the special case considered here, works well as an iterative formula with any
polynomial.

Differentiating Eq. (a) with respect to x, we get

Px)=x—-@" ' +n—-Dx-r(x—qg"?

1 -1
=&m( + 2 )
X—r x—gq

Thus
P (x) 1 n—1
P(x) x—-r x—gq (®)
which upon differentiation yields
mm_[mmr__ 1 n-1 ©
P(x) |[PX]  (@x-1r? (x—g)?
It is convenient to introduce the notation
P/ 1/
G(x) = () H(x) = G*(x) — By () (4.14)

Pu(x) Pu(x)
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so that Egs. (b) and (c) become

Gy =+ 71t (4.152)
X—r x—q
He) = —» n-1 (4.15b)

c—r? " x-q?
If we solve Eq. (4.15a) for x — g and substitute the result into Eq. (4.15b), we obtain a
quadratic equation for x — r. The solution of this equation is the Laguerre’s formula

n

- (4.16)
G(x) % ,/(n— 1) [nH(x) - G2(x)]

X—r

The procedure for finding a zero of a general polynomial by Laguerre’s
formula is:

1. Let x be a guess for the root of P,(x) = 0 (any value will do).

2. Evaluate P,(x), P;(x), and P)(x) using the procedure outlined in Eqgs. (4.10) and
(4.11).

3. Compute G(x) and H(x) from Egs. (4.14).

4. Determine the improved root r from Eq. (4.16) choosing the sign that results in the
larger magnitude of the denominator (this can be shown to improve convergence).

5. Let x < r and repeat steps 2-5 until | P,(x)| < ¢ or |x — r| < ¢, where ¢ is the error
tolerance.

One nice property of Laguerre’s method is that converges to a root, with very few
exceptions, from any starting value of x.

B polyRoots

The function polyRoots in this module computes all the roots of P,(x) = 0, where
the polynomial P,(x) defined by its coefficient array a = [a,, ay, as, . . .]. After the first
root is computed by the subfunction laguerre, the polynomial is deflated using
deflPoly and the next zero computed by applying 1laguerre to the deflated poly-
nomial. This process is repeated until all n roots have been found. If a computed
root has a very small imaginary part, it is very likely that it represents roundoff error.
Therefore, polyRoots replaces a tiny imaginary part by zero.

function root = polyroots(a,tol)
% Returns all the roots of the polynomial
% a(l)*x"n + a(2)*x"(n-1) + ... + a(n+l).
% USAGE: root = polyroots(a,tol).

% tol = error tolerance (default is 1.0e4*eps).

if nargin == 1; tol = 1.0e-6; end
n = length(a) - 1;
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root = zeros(n,1l);
for i = 1:n
x = laguerre(a,tol);
if abs(imag(x)) < tol; x = real(x); end
root(i) = x;
a = deflpoly(a,x);

end

function x = laguerre(a,tol)
% Returns a root of the polynomial
% a(l)*x™ n + a(2)*x"(n-1) + ... + a(n+l).
X = randn; % Start with random number
n = length(a) - 1;
for i = 1:30
[p,dp,ddp] = evalpoly(a,x);
if abs(p) < tol; return; end
g = dp/p; h = g*g - ddp/p;
f sart((n - 1)*(n*h - g*g));
if abs(g + f) >= abs(g - f); dx = n/(g + £);
else; dx = n/(g - f); end

x = X - dx;

if abs(dx) < tol; return; end
end

error(’Too many iterations in laguerre’)

function b = deflpoly(a,r)

% Horner’s deflation:

% a(l)*x™n + a(2)*x"(n-1) + ... + a(n+l)

% = (x - )[b(L)*x"(n-1) + b(2)*x"(n-2) + ...+ b(n)].

n = length(a) - 1;
b = zeros(n,1);
b(1) = a(l);

for i = 2:n; b(i) = a(i) + r*b(i-1); end

e b (55kw annd - e 3590l - I e ol

Since the roots are computed with finite accuracy, each deflation introduces

small errors in the coefficients of the deflated polynomial. The accumulated roundoff

error increases with the degree of the polynomial and can become severe if the poly-

nomial is ill conditioned (small changes in the coefficients produce large changes in

the roots). Hence the results should be viewed with caution when dealing with poly-

nomials of high degree.
The errors caused by deflation can be reduced by recomputing each root using

the original, undeflated polynomial. The roots obtained previously in conjunction
with deflation are employed as the starting values.
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EXAMPLE 4.10
A zero of the polynomial Py(x) = 3x* — 10x® — 48x? — 2x + 12 is x = 6. Deflate the
polynomial with Horner’s algorithm, that is, find P;(x) so that (x — 6) P;(x) = P,(x).

Solution With r = 6 and n = 4, Egs. (4.13) become
by =a;=3
b, =ay+6b =-10+6(3) =8
by = az + 6b, = —48+6(8) =0
by = a4+ 6by = -2+ 6(0) = -2
Therefore,
Py(x) =3x>+8x> -2

EXAMPLE 4.11

A root of the equation P;(x) = x> — 4.0x? — 4.48x + 26.1 is approximately x = 3 — i.
Find a more accurate value of this root by one application of Laguerre’s iterative
formula.

Solution Use the given estimate of the root as the starting value. Thus
x=3-i x*=8-6i x*=18-26i
Substituting these values in P;(x) and its derivatives, we get
Py(x) = x> — 4.0x* — 4.48x + 26.1
= (18 — 26i) — 4.0(8 — 6i) —4.48(3 — i) +26.1 = —1.34 + 2.48i
Pj(x) = 3.0x* — 8.0x — 4.48
= 3.0(8 —6i) —8.0(3 —i) —4.48 = —4.48 — 10.0i
P/(x) = 6.0x —8.0=6.0(3 —i) — 8.0 =10.0 — 6.0i

Equations (4.14) then yield

Pjx) —4.48—10.0i .
_ _ — —2.36557 + 3.08462
P(x)  —134+248i + !

o 10.0 — 6.0i
B0 (L5 36557 + 3.084620)2 — 00 —600
Py(x) —1.34 + 2.48i

= 0.35995 — 12.48452i

G(x)

Hx) = G*(x) —

The term under the square root sign of the denominator in Eq. (4.16) becomes

FG) = /(n— 1) [n HE) — G*(x)]

— /2[3(0.35995 — 12.48452i) — (~2.36557 + 3.08462i)2]

= \/5.67822 —45.71946i = 5.08670 — 4.49402;
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Now we must find which sign in Eq. (4.16) produces the larger magnitude of the
denominator:

|G(x) + F(x)| = |(—2.36557 + 3.08462i) + (5.08670 — 4.49402i)|
= |2.72113 — 1.40940i|] = 3.06448
|G(x) — F(x)| = |(—2.36557 + 3.08462i) — (5.08670 — 4.494024)|

= |-7.45227 4 7.57864i| = 10.62884

Using the minus sign, Eq. (4.16) yields the following improved approximation for
the root
S — B-10-— 3 -
G(x) — F(x) —7.45227 4 7.57864i
= 3.19790 — 0.79875i

r=Xx

Thanks to the good starting value, this approximation is already quite close to the
exact value r = 3.20 — 0.80i.

EXAMPLE 4.12
Use polyRoots to compute all the roots of x* — 5x% — 9x? 4 155x — 250 = 0.

Solution The command
>> polyroots([1l -5 -9 155 -250])
results in

ans =
2.0000
4.0000 - 3.00001i
4.0000 + 3.00001
-5.0000

There are two real roots (x = 2 and —5) and a pair of complex conjugate roots
(x =44+30).

PROBLEM SET 4.2

Problems 1-5 A zero x = r of P,(x) is given. Verify that r is indeed a zero, and then
deflate the polynomial, that is, find P,_;(x) so that P,(x) = (x — r) P, (x).

Py(x) =3x% +7x*> — 36x + 20,1 = —5.
P(x)=x*—-3x*4+3x—1,r=1.

Ps(x) = x°> — 30x* +361x% — 2178x% 4 6588x — 7992, r = 6.
Pi(x) =x*—5x3 —2x* —20x —24,r = 2i.

P3(x) =3x3 —19x2 +45x — 13,r =3 — 2i.

o W
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Problems 6-9 A zero x = r of P,(x) is given. Determine all the other zeros of P,(x)
by using a calculator. You should need no tools other than deflation and the quadratic
formula.

P3(x) = x4+ 1.8x*> —9.01x — 13.398, r = —3.3.
P3(x) = x® — 6.64x% + 16.84x — 8.32, r = 0.64.
Py(x) =2x% —13x*> +32x — 13,1 =3 — 2i.

P(x) =x*—3x2+10x*—6x—20,7r =1+ 3i.

© XN

Problems 10-15 Find all the zeros of the given P,(x).

10. MPy(x) = x* +2.1x% — 2.52x2 + 2.1x — 3.52.

11. MP;5(x) = x> — 156x* — 5x3 + 780x2 + 4x — 624.

12. BP;(x) = x® + 4x° — 8x* — 34x° + 57x% + 130x — 150.

13. WP (x) = 8x” + 28x5 4+ 34x° — 13x* — 124x% + 19x? + 220x — 100.

14. BMP3(x) = x8 — 7x7 + 7x® + 25x° + 24x* — 98x% — 472x% + 440x + 800.
15. BPy(x) = x* + 5+ )x® — (8 — 5i)x* + (30 — 14i)x — 84.

16. m

X5

The two blocks of mass m each are connected by springs and a dashpot. The stiff-
ness of each spring is k, and c s the coefficient of damping of the dashpot. When
the system is displaced and released, the displacement of each block during the
ensuing motion has the form

X (1) = Are® cos(wit + ¢;), k=1,2
where A and ¢, are constants, and w = w, + iw; are the roots of

c k ck k\?
0 +2— +3=0*+ ——w+ <—> =0
m m mm m
Determine the two possible combinations of o, and w; if ¢/m =12 s~! and

k/m = 1500s72.
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17.

| L

y

The lateral deflection of the beam shown is
Wo

~ 120E1

where wy is the maximum load intensity and ET represents the bending rigidity.

y (x> —3L%x% +213x%)

Determine the value of x/ L where the maximum displacement occurs.

MATLAB Functions

x = fzero(@func,x0) returns the zero of the function func closest to x0.

w
Il

fzero(@func,[a b]) can be used when the root has been bracketed in
(a,b).

The algorithm used for fzero is Brent’s method,” which is about equal to Ridder’s
method in speed and reliability, but its algorithm is considerably more complicated.

x = roots(a) returns the zeros of the polynomial P,(x) = a1x" + - - - + anX + an1-

The zeros are obtained by calculating the eigenvalues of the n x n “companion

matrix”
—r/a1 —az/ay - —ap/d1 —Qpi1/0n
1 0 o0 0
A—|O 0 0 0
0 0 1 0

The characteristic equation (see Section 9.1) of this matrix is

X 2 g =0

a an ant1
ay ay a

which is equivalent to P,(x) = 0. Thus the eigenvalues of A are the zeros of P,(x). The
eigenvalue method is robust, but considerably slower than Laguerre’s method.

9 Brent, R.P, Algorithms for Minimization without Derivatives, Prentice-Hall, New York, 1972.
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Numerical Differentiation

Given the function f(x), compute d" f/dx" at given x

Introduction

Numerical differentiation deals with the following problem: we are given the function
¥y = f(x) and wish to obtain one of its derivatives at the point x = x;.. The term “given”
means that we either have an algorithm for computing the function, or possess a
set of discrete data points (x;, y;), i = 1, 2, ..., n. In either case, we have access to a
finite number of (x, y) data pairs from which to compute the derivative. If you suspect
by now that numerical differentiation is related to interpolation, you are right — one
means of finding the derivative is to approximate the function locally by a polynomial
and then differentiate it. An equally effective tool is the Taylor series expansion of f(x)
about the point xi. The latter has the advantage of providing us with information
about the error involved in the approximation.

Numerical differentiation is not a particularly accurate process. It suffers from a
conflict between roundoff errors (due to limited machine precision) and errors inher-
ent in interpolation. For this reason, a derivative of a function can never be computed
with the same precision as the function itself.

Finite Difference Approximations

The derivation of the finite difference approximations for the derivatives of f(x) are
based on forward and backward Taylor series expansions of f(x) about x, such as

hz hS h4
f+m = f00+ R G + 5 /0 + 2 /0 + 5 fP0 + (a)

3

/ hZ 1/ h 111 h4 (4)
f(x—h)Zf(x)—hf(xH—jf(x)—§ (x)—l—If (x) —--- (b)
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2h)? 2h)3
fx+2h) = flx) +2hf' (x) + ( 2,) fr 0+ ( 3,) "(x) (©
2h)*
+Tf(4)(X) + -
4 (2h)2 4 (Zh)3 /1!
flx —2h) = f(x) —2hf' (x) + Tf (x) — 30 1 (x) (d)
2h*
+T!f(4)(x) .
We also record the sums and differences of the series:
h4
fx+ R+ flx—h =2f(x) + K f'(x) + o P+ ()
h3
flx+h) — flx—h) = 2hf'(x) + ?f/”(x) +... ()
4 4
flx+2h) + fx —2h) = 2f(x) + 4R* f"(x) + %f(‘“ (X)) +--- )
8nd
f(X—l-Zh)—f(x—Zh)=4hf/(x)+TfW(x)+~-~ (h)

Note that the sums contain only even derivatives, while the differences retain just the
odd derivatives. Equations (a)-(h) can be viewed as simultaneous equations that can
be solved for various derivatives of f(x). The number of equations involved and the
number of terms kept in each equation depends on order of the derivative and the
desired degree of accuracy.

First Central Difference Approximations
Solution of Eq. (f) for f'(x) is

fx+h) — f(x—h)
2h
Keeping only the first term on the right-hand side, we have

hz
f/(x): _Ef///(x)_...

fx+h—flx-h
2h

which is called the first central difference approximation for f'(x). The term O(h?)

reminds us that the truncation error behaves as h?.

f(x= +Oh?) (5.1)

From Eqg. (e) we obtain

-2 — 2
£ = f&x+h) —2f(x)+ f(x—h) N h

2w
e 12f (x) +

or

fx+h-2fx)+ f(x—h)

= +O(h?) (5.2)

f//(x) —
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5.2 Finite Difference Approximations

| [ fae—2n [ fa=h | f& [ fa+h | flx+2h

2hf'(x) -1 0 1
R f"(x) 1 -2 1
213 7 (x) -1 2 0 -2 1
R 9 (x) 1 —4 6 -4 1

Table 5.1. Coefficients of central finite difference approximations of
O(h?)

Central difference approximations for other derivatives can be obtained from
Egs. (a)-(h) in a similar manner. For example, eliminating f’(x) from Egs. (f) and (h)
and solving for f”(x) yields

fx+2h) =2f(x+h +2f(x—h) — f(x—2h)

5 +Oo)  (53)

f/// (x) —

The approximation

fx+2h) —4f(x+ W) +6f(x) —4f(x — h) + f(x —2h)

9 (x) = " +0Mm)  (54)
is available from Egs. (e) and (g) after eliminating f”(x). Table 5.1 summarizes the
results.

First Noncentral Finite Difference Approximations

Central finite difference approximations are not always usable. For example, consider
the situation where the function is given at the n discrete points x;, x», .. ., x,. Since
central differences use values of the function on each side of x, we would be unable
to compute the derivatives at x; and x;,. Clearly, there is a need for finite difference
expressions that require evaluations of the function only on one side of x. These ex-
pressions are called forward and backward finite difference approximations.

Noncentral finite differences can also be obtained from Egs. (a)-(h). Solving
Eq. (a) for f'(x) we get

4 _ f(x + h) B f(x) h Z h2 111 h3 (4)
fx)= A 5 f'(x) 6f(x) 4!f (x) —---
Keeping only the first term on the right-hand side leads to the first forward difference
approximation

fx+h) — flx)

W + O(h) (5.5)

fx) =
Similarly, Eq. (b) yields the first backward difference approximation

f)—fx—h
h

fx) = + 0O (5.6)
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] [ fo [ foe+n | fe+2h) | fxe+3h | flx+4h)

hf (x) -1 1
R2 f" (x) 1 -2 1
3 (x) -1 3 -3 1
Rt f@ (x) 1 —4 6 —4 1

Table 5.2a. Coefficients of forward finite difference approximations of O(h)

| | foc—an | fa—3m | fau—2n | fx—h | fx) |

hf'(x) -1 1
R f" (x) 1 2 1
R " (x) -1 3 -3 1
A (x) 1 —4 6 —4 1

Table 5.2b. Coefficients of backward finite difference approximations of O(h)

Note that the truncation error is now O (h), which is not as good as the O(h?) error in
central difference approximations.

We can derive the approximations for higher derivatives in the same manner. For
example, Egs. (a) and (c) yield
flx+2h) —2f(x+ h) + f(x)

n2

The third and fourth derivatives can be derived in a similar fashion. The results are
shown in Tables 5.2a and 5.2b.

+O(h) (5.7)

f//(x) —

Second Noncentral Finite Difference Approximations

Finite difference approximations of O(h) are not popular due to reasons that will be
explained shortly. The common practice is to use expressions of O(h?). To obtain
noncentral difference formulas of this order, we have to retain more term in Taylor
series. As an illustration, we will derive the expression for f’(x). We start with Egs. (a)
and (c), which are

h? n h*
flx+h = f(x) + hf'(x) + 7f”(x) + Ef’”(x) + ﬂf(‘” (xX) +---

4 2 g1 4h3 % 2h4 (4)
fx+2h) = f(x) +2hf'(x) + 2h° f (x)+7f (x)+7f () +---

We eliminate f”(x) by multiplying the first equation by 4 and subtracting it from the
second equation. The result is
h4
flx+2h) —4f(x+ h) = —3fx) — 2hf' (x) + Ef(‘“ (X) + -

Therefore,

—fx+2h) +4f(x+ h) —3f(x) N n

reay _ )
fx) = °h 4f (x) +




www.MatlabKar.com e b (3l At - e 35901 - IS e ol

5.2 Finite Difference Approximations

] | f@) [ fa+h | fe+2h | fe+3h | fx+4h) | flx+5h) |

2hf" (x) -3 4 ~1
R f7 (x) 2 -5 4 -1
2R f (%) -5 18 —24 14 -3
Rt @ (x) 3 —-14 26 —24 11 -2

Table 5.3a. Coefficients of forward finite difference approximations of O(h?)

| [ fa—sn | fa—an [ fe=3h [ fae—2h) [ fac—h [ f@) |

2hf'(x) 1 —4 3

h2 7 (x) -1 4 -5 2
213 f (x) 3 14 24 —-18 5
A (x) -2 11 —24 26 —14 3

Table 5.3b. Coefficients of backward finite difference approximations of O(h?)

or
—fx+2h) +4f(x+ h) —3f(x)
2h

Equation (5.8) is called the second forward finite difference approximation.
Derivation of finite difference approximations for higher derivatives involve ad-

i + 0O (5.8)

ditional Taylor series. Thus the forward difference approximation for f”(x) utilizes se-
ries for f(x + h), f(x + 2h), and f(x + 3h); the approximation for f””(x) involves Taylor
expansions for f(x + h), f(x + 2h), f(x + 3h), and f(x + 4h). As you can see, the com-
putations for high-order derivatives can become rather tedious. The results for both
the forward and backward finite differences are summarized in Tables 5.3a and 5.3b.

Errors in Finite Difference Approximations

Observe that in all finite difference expressions the sum of the coefficients is zero.
The effect on the roundoff error can be profound. If & is very small, the values of
fx), f(x £+ h), f(x+2h), and so forth, will be approximately equal. When they are
multiplied by the coefficients in the finite difference formulas and added, several sig-
nificant figures can be lost. On the other hand, we cannot make / too large, because
then the truncation error would become excessive. This unfortunate situation has no
remedy, but we can obtain some relief by taking the following precautions:

e Use double-precision arithmetic.
o Employ finite difference formulas that are accurate to at least O(h?).

To illustrate the errors, let us compute the second derivative of f(x) = e™* at
x =1 from the central difference formula, Eq. (5.2). We carry out the calculations
with six- and eight-digit precision, using different values of h. The results, shown in
Table 5.4, should be compared with (1) = e™! = 0.367 879 44.
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h H 6-digit precision | 8-digit precision
0.64 0.380610 0.380609 11
0.32 0.371035 0.371029 39
0.16 0.368711 0.368 664 84
0.08 0.368281 0.368076 56
0.04 0.36875 0.367 83125
0.02 0.37 0.3679
0.01 0.38 0.3679
0.005 0.40 0.3676
0.0025 0.48 0.3680
0.00125 1.28 0.3712

Table 5.4. (e *)” at x = 1 from central finite dif-
ference approximation

In the six-digit computations, the optimal value of # is 0.08, yielding a result ac-
curate to three significant figures. Hence three significant figures are lost due to a
combination of truncation and roundoff errors. Above optimal %, the dominant error
is due to truncation; below it, the roundoff error becomes pronounced. The best re-
sult obtained with the eight-digit computation is accurate to four significant figures.
Because the extra precision decreases the roundoff error, the optimal & is smaller
(about 0.02) than in the six-figure calculations.

Richardson Extrapolation

Richardson extrapolation is a simple method for boosting the accuracy of certain nu-
merical procedures, including finite difference approximations (we will also use it
later in numerical integration).

Suppose that we have an approximate means of computing some quantity
G. Moreover, assume that the result depends on a parameter h. Denoting the
approximation by g(h), we have G = g(h) + E(h), where E(h) represents the error.
Richardson extrapolation can remove the error, provided that it has the form E(h) =
ch”, c and p being constants. We start by computing g(h) with some value of h, say,
h = h,. In that case we have

G = g(h) + chf (i)
Then we repeat the calculation with h = hy, so that
G = g(hy) + chf G)

Eliminating c and solving for G, Egs. (i) and (j) yield

(/) hp)Pg(hy) — g(h)

G = 5.8
(/)P -1 ©8)
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5.3 Richardson Extrapolation

which is the Richardson extrapolation formula. It is common practice to use h, =
hy /2, in which case Eq. (5.8) becomes

G— 2Pg(h/2) — g(h)
a 2r—1

(5.9)

Let us illustrate Richardson extrapolation by applying it to the finite difference
approximation of (e *)” at x = 1. We work with six-digit precision and utilize the re-
sults in Table 5.4. Since the extrapolation works only on the truncation error, we must
confine & to values that produce negligible roundoff. Choosing /; = 0.64 and letting
g(h) be the approximation of f”(1) obtained with h, we get from Table 5.4

g(h) =0.380610 g(h/2) = 0.371035

The truncation error in central difference approximation is E(h) = O(h?) = c;h* +
e h* + c3 M8 + - - - . Therefore, we can eliminate the first (dominant) error term if we
substitute p = 2 and i = 0.64 in Eq. (5.9). The result is

. 22¢(0.32) — g(0.64) ~4(0.371035) — 0.380610

G
22 -1 3

=0.367843

which is an approximation of (e~*)” with the error O(h*). Note that it is as accurate as
the best result obtained with eight-digit computations in Table 5.4.

EXAMPLE 5.1
Given the evenly spaced data points

x 0 0.1 0.2 0.3 0.4
f(x) || 0.0000 | 0.0819 | 0.1341 | 0.1646 | 0.1797

compute f’(x) and f”(x) at x = 0 and 0.2 using finite difference approximations of
O(h?).

Solution From the forward difference formulas in Table 5.3a, we get

=3f(0) +4(0.1) — f(0.2)  —3(0) +4(0.0819) — 0.1341

£0) = 201 02 = 0.967
2f(0) —5f(0.1) + 4f(0.2) — f(0.3
F10) = J(0) = 5f( )+2f( ) — f(0.3)
0.1)
2(0) — 5(0.0819) +4(0.1341) — 0.1646
= =-3.77
(0.1)?
The central difference approximations in Table 5.1 yield
F02) = —f(0.1) + £(0.3) _ —0.0819 + 0.1646 04135
2(0.1) 0.2
£102) = f(0.1) — 2£(0.2) + f(0.3) _ 0.0819 — 2(0.1341) 4 0.1646 — 917

(0.1)? (0.1)?
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EXAMPLE 5.2
Use the data in Example 5.1 to compute f’(0) as accurately as you can.

Solution One solution is to apply Richardson extrapolation to finite difference ap-
proximations. We start with two forward difference approximations for f(0): one us-
ing h = 0.2 and the other one i = 0.1. Referring to the formulas of O(h?) in Table 5.3a,

we get
20.2) = —3f(0) +4f(0.2) — f(0.4) _ 3(0) +4(0.1341) — 0.1797 — 0.8918
2(0.2) 0.4
20.1) = —3f(0) +4f(0.1) — f(0.2) _ —3(0) +4(0.0819) — 0.1341 — 0.9675
2(0.1) 0.2

where g denotes the finite difference approximation of f'(0). Recalling that the er-
ror in both approximations is of the form E(h) = cih? + coh* + c3h8 + - - -, we can use
Richardson extrapolation to eliminate the dominant error term. With p = 2 we ob-
tain from Eq. (5.9)

_ 22g(0.1) — g(0.2) _4(0.9675) — 0.8918

"0~ G
1) 21 3

= 0.9927

which is a finite difference approximation of OhY).

EXAMPLE 5.3

The linkage shown has the dimensions a = 100 mm, b = 120 mm, ¢ = 150 mm,
and d = 180 mm. It can be shown by geometry that the relationship between the
angles @ and g is

(d—acosa —bcosﬂ)z—i- (asinoz—l—bsinﬂ)2 -Z=0

For a given value of «, we can solve this transcendental equation for 8 by one of the
root-finding methods in Chapter 4. This was done with « = 0°, 5°, 10°, ..., 30°, the
results being

o (deg) 0 5 10 15 20 25 30
B (rad) || 1.6595 | 1.5434 | 1.4186 | 1.2925 | 1.1712 | 1.0585 | 0.9561
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If link A B rotates with the constant angular velocity of 25 rad/s, use finite difference
approximations of O (h?) to tabulate the angular velocity dg/dt of link BC against «.

Solution The angular speed of BC'is

dp _ dpda @
E_%E_zsda rad/s

where dB/da is computed from finite difference approximations using the data in the
table. Forward and backward differences of O(h?) are used at the endpoints, central
differences elsewhere. Note that the increment of « is

b
h= (5deg) (mrad / deg) = 0.087266 rad
The computations yield
, —3B(0°) +48(5°) — B(10°) —3(1.6595) + 4(1.5434) — 1.4186
0°) =25 =25
PO 2h 2(0.087266)
= —32.01rad/s
, 10°) — g(0° 1.4186 — 1.6595
B(°) = 25'3( ) — AO) =25 = —34.51rad/s
2h 2(0.087266)
and so forth.
The complete set of results is
« (deg) 0 5 10 15 20 25 30

B (rad/s) || —32.01 | —34.51 | —35.94 | —35.44 | —33.52 | —30.81 | —27.86

Derivatives by Interpolation

If f(x) is given as a set of discrete data points, interpolation can be a very effective
means of computing its derivatives. The idea is to approximate the derivative of f(x)
by the derivative of the interpolant. This method is particularly useful if the data
points are located at uneven intervals of x, when the finite difference approximations
listed in the last section are not applicable.'?

Polynomial Interpolant
The idea here is simple: fit the polynomial of degree n — 1

Pia(x) =@ X"+ ax"' + - -ap 1 X+ a, (@)
through n data points and then evaluate its derivatives at the given x. As pointed

out in Section 3.2, it is generally advisable to limit the degree of the polynomial to

10 1t is possible to derive finite difference approximations for unevenly spaced data, but they would
not be as accurate as the formulas derived in Section 5.2.
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less than six in order to avoid spurious oscillations of the interpolant. Since these
oscillations are magnified with each differentiation, their effect can be devastating. In
view of the above limitation, the interpolation should usually be a local one, involving
no more than a few nearest-neighbor data points.

For evenly spaced data points, polynomial interpolation and finite difference
approximations produce identical results. In fact, the finite difference formulas are
equivalent to polynomial interpolation.

Several methods of polynomial interpolation were introduced in Section 3.2. Un-
fortunately, none of them are suited for the computation of derivatives. The method
that we need is one that determines the coefficients a;, as, . .., a, of the polynomial
in Eq. (a). There is only one such method discussed in Chapter 4 — the least-squares fit.
Although this method is designed mainly for smoothing of data, it will carry out inter-
polation if we use m = nin Eq. (3.22). If the data contain noise, then the least-squares
fit should be used in the smoothing mode, that is, with m < n. After the coefficients
of the polynomial have been found, the polynomial and its first two derivatives can
be evaluated efficiently by the function evalpoly listed in Section 4.7.

Cubic Spline Interpolant

Due to its stiffness, cubic spline is a good global interpolant; moreover, it is easy to
differentiate. The first step is to determine the second derivatives k; of the spline at
the knots by solving Egs. (3.12). This can be done with the function splineCurv as
explained in Section 3.3. The first and second derivatives are then computed from

, ki [3(x — xi11)?
flip () = s [7)@ T (X — Xi41)
kit1 [3(x — x;)? i — Vi
o [7 — - xim} LA} (5.10)
6 Xi — Xit+1 Xi — Xit1
" X — Xiy1 X — X
o) = kh— g, ——— 5.11
ﬁ,l+l( ) lxi — Xin1 i+1 Xi — Xip1 ( )
which are obtained by differentiation of Eq. (3.10).
EXAMPLE 5.4
Given the data
X 1.5 1.9 2.1 2.4 2.6 3.1

f(x) || 1.0628 | 1.3961 | 1.5432 | 1.7349 | 1.8423 | 2.0397

compute f’(2) and f”(2) using (1) polynomial interpolation over three nearest-
neighbor points, and (2) natural cubic spline interpolant spanning all the data points.

Solution of Part (1) Let the interpolant passing through the points at x = 1.9,
2.1, and 2.4 be P(x) = a; + a»x + azx*>. The normal equations, Egs. (3.23), of the

e b (55kw annd - e 3590l - I e ol
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least-squares fit are

nooYx Yx||la 2V
Yxio YxF Y| |a =] Xy
i Yx Yx||as > yix?

After substituting the data, we get

3 6.4 13.78 a 4.6742
6.4 13.78  29.944 a; | = | 10.0571
13.78 29.944 65.6578 as 21.8385

T
which yields a=|-07714 15075 —0.1930] . Thus the interpolant and its
derivatives are
Py(x) = —0.1903x2 + 1.5075x — 0.7714
P}(x) = —0.3860x + 15075
PJ/(x) = —0.3860

which gives us

f(2) = Pj(2) = —0.3860(2) + 1.50752 = 0. 7355
f'@) = PJ/(2) = —0.3860

Solution of Part (2) We must first determine the second derivatives k; of the spline
at its knots, after which the derivatives of f(x) can be computed from Egs. (5.10) and
(5.11). The first part can be carried out by the following small program:

% Example 5.4 (Curvatures of cubic spline at the knots)
xData = [1.5; 1.9; 2.1; 2.4; 2.6; 3.1];

yData = [1.0628; 1.3961; 1.5432; 1.7349; 1.8423; 2.0397];
k = splineCurv(xData,yData)

The output of the program, consisting of k; to kg, is

-0.4258
-0.3774
-0.3880
-0.5540
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Since x = 2 lies between knots 2 and 3, we must use Equations (5.10) and (5.11)
with i = 2. This yields

Loy ke [3(x — x3)?
f2)= fé‘3(2) =% [?)Cg — (% — X3)]
ks [3(x — x)? —
_€3|: (X — x2) _(xz_x3)}+Y2 Vs
X2 — X3 X2 — X3
— _ 2
_ (—0.4258) |:3(2 2.1) _ (_0.2)]
6 (—=0.2)
(—0.3774) [3(2 — 1.9)? 1.3961 — 1.5432
ST [ - o |+ PO
= 0.7351
” o~ _ X — X3 _ X — X2
Fo~E@=hi -k
2-21 2—-19
= (—0.4258) —02) — (—0.3774) —02) = —0.4016

Note that the solutions for f’(2) in parts (1) and (2) differ only in the fourth signif-
icant figure, but the values of f”(2) are much further apart. This is not unexpected,
considering the general rule: the higher the order of the derivative, the lower the pre-
cision with which it can be computed. It is impossible to tell which of the two results
is better without knowing the expression for f(x). In this particular problem, the data
points fall on the curve f(x) = x?e~*/2, so that the “correct” values of the derivatives
are f'(2) = 0.7358 and f”(2) = —0.3679.

EXAMPLE 5.5
Determine f’(0) and f'(1) from the following noisy data
X 0 0.2 04 0.6
fx) || 1.9934 | 2.1465 | 2.2129 | 2.1790
X 0.8 1.0 1.2 1.4
f(x) || 2.0683 | 1.9448 | 1.7655 | 1.5891

Solution We used the program listed in Example 3.12 to find the best polynomial fit
(in the least-squares sense) to the data. The results were:

degree of polynomial = 2
coeff =
-7.0240e-001
6.4704e-001
2.0262e+000
sigma =
3.6097e-002
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degree of polynomial = 3
coeff =
4.0521e-001
-1.5533e+000
1.0928e+000
1.9921e+000
sigma =
8.2604e-003

degree of polynomial = 4

coeff =
-1.5329e-002
4.4813e-001
-1.5906e+000
1.1028e+000
1.9919e+000

sigma =
9.5193e-003

degree of polynomial =
Done

Based on standard deviation, the cubic seems to be the best candidate for the
interpolant. Before accepting the result, we compare the plots of the data points and
the interpolant - see the figure. The fit does appear to be satisfactory

2.3

LB o o e S

J&)

1.5°
0.00 020 040 060 080 1.00 1.20 1.40

Approximating f(x) by the interpolant, we have

f(x) = a1 x® + axx* + azx + a*
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so that
f/(x) = 3a1x* + 2a,x + as
Therefore,
f'(0) ~ az = 1.093
(1) = 3a; + 2a, + az = 3(0.405) + 2(—1.553) + 1.093 = —0.798

In general, derivatives obtained from noisy data are at best rough approxima-
tions. In this problem, the data represents f(x) = (x + 2)/ cosh x with added random
noise. Thus f'(x) = [1 — (x 4+ 2) tanh x] / cosh x, so that the “correct” derivatives are
f/(0) =1.000 and f'(1) = —0.833.

PROBLEM SET 5.1

1. Given the values of f(x) at the points x, x — h;, and x + h,, determine the finite
difference approximation for f”(x). What is the order of the truncation error?

2. Given the first backward finite difference approximations for f’(x) and f”(x), de-
rive the first backward finite difference approximation for f”(x) using the oper-
ation " (x) = [f”(x)]/.

3. Derive the central difference approximation for f”(x) accurate to O(h*) by apply-
ing Richardson extrapolation to the central difference approximation of O(h?).

4. Derive the second forward finite difference approximation for f”(x) from the
Taylor series.

5. Derive the first central difference approximation for f @ (x) from the Taylor series.

6. Use finite difference approximations of O(h?) to compute f'(2.36) and f”(2.36)
from the data

X 2.36 2.37 2.38 2.39
f(x) || 0.85866 | 0.86289 | 0.86710 | 0.87129
7. Estimate f'(1) and f”(1) from the following data
X 0.97 1.00 1.05
f(x) || 0.85040 | 0.84147 | 0.82612
8. Given the data
X 0.84 0.92 1.00 1.08 1.16
fx) 0.431711 | 0.398519 | 0.367879 | 0.339596 | 0.313486

calculate f”(1) as accurately as you can.
9. Use the data in the table to compute f’(0.2) as accurately as possible.

X

0

0.1

0.2

0.3

0.4

fx)

0.000000

0.078 348

0.138910

0.192916

0.244 981
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10. Using five significant figures in the computations, determine d(sinx)/dx at
x = 0.8 from (a) the first forward difference approximation and (b) the first cen-
tral difference approximation. In each case, use & that gives the most accurate
result (this requires experimentation).

11. W Use polynomial interpolation to compute f” and f” at x = 0, using the data

x 2.2 -0.3 0.8 1.9
f(x) || 15.180 | 10.962 | 1.920 | —2.040

12. m

The crank A B of length R =90 mm is rotating at constant angular speed of
de /dt = 5000 rev/min. The position of the piston C can be shown to vary with

the angle 6 as
x=R (cos@ ++/2.52 — sin? 9)

Write a program that computes the acceleration of the piston at 6 =
0°,5°,10°, ..., 180° by numerical differentiation.
13. &
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The radar stations A and B, separated by the distance a = 500 m, track the plane
C by recording the angles « and $ at tenth-second intervals. If three successive
readings are

t(s) 0.9 1.0 1.1
o 54.80° | 54.06° | 53.34°
B 65.59° | 64.59° | 63.62°

calculate the speed v of the plane and the climb angle y at ¢ = 1.0 s. The coordi-
nates of the plane can be shown to be

tan 8 tan o tan 8
tan g — tano tan g — tano

14. m

20

-20.
D{XOB
C

Dimensions 190

in mm
QO
D
o QeA
B o

Geometric analysis of the linkage shown resulted in the following table relating
the angles 6 and :

6 (deg) 0 30 60 90 120 150
B (deg) || 59.96 | 56.42 | 44.10 | 25.72 | —0.27 | —34.29

Assuming that member A B of the linkage rotates with the constant angular ve-
locity d6/dt = 1 rad/s, compute dp/dt in rad/s at the tabulated values of 6. Use
cubic spline interpolation.
15. W The relationship between stress o and strain ¢ of some biological materials in
uniaxial tension is
do

E=(l+b0’
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where a and b are constants. The following table gives the results of a tension
test on such a material:

Strain e  Stress o (MPa)

0 0
0.05 0.252
0.10 0.531
0.15 0.840
0.20 1.184
0.25 1.558
0.30 1.975
0.35 2.444
0.40 2.943
0.45 3.500
0.50 4.115

Write a program that plots the tangent modulus do /de versus ¢ and computes
the parameters a and b by linear regression.

MATLAB Functions

d = diff(y) returns the differences d(i) = y(i+1) - y(i). Note that
length(d) = length(y) - 1.

dn = diff(y,n) returns the nth differences; e.g., d2(i) = d(i+1) - d(i),
d3(i) = d2(i+1) - d2(di),etc. Here length(dn) = length(y) - n.

d = gradient(y,h) returns the finite difference approximation of dy/dx at each
point,where h is the spacing between the points.

d2 = del2(y,h) returns the finite difference approximation of (d®y/dx?) /4 at
each point, where h is the spacing between the points.
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Compute fab f(x) dx, where f(x) is a given function

Introduction

Numerical integration, also known as quadrature, is intrinsically a much more accu-
rate procedure than numerical differentiation. Quadrature approximates the definite
integral

b
/ fx)dx

by the sum

I=Y Aiftn)

i=1

where the nodal abscissas x; and weights A; depend on the particular rule used for the
quadrature. All rules of quadrature are derived from polynomial interpolation of the
integrand. Therefore, they work best if f(x) can be approximated by a polynomial.

Methods of numerical integration can be divided into two groups: Newton—Cotes
formulas and Gaussian quadrature. Newton-Cotes formulas are characterized by
equally spaced abscissas, and include well-known methods such as the trapezoidal
rule and Simpson’s rule. They are most useful if f(x) has already been computed at
equal intervals, or can be computed at low cost. Since Newton—Cotes formulas are
based on local interpolation, they require only a piecewise fit to a polynomial.

In Gaussian quadrature the locations of the abscissas are chosen to yield the best
possible accuracy. Because Gaussian quadrature requires fewer evaluations of the in-
tegrand for a given level of precision, it is popular in cases where f(x) is expensive to
evaluate. Another advantage of Gaussian quadrature is ability to handle integrable
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singularities, enabling us to evaluate expressions such as

1

gx)
0 ~/1—x2

provided that g(x) is a well-behaved function.

dx

Newton-Cotes Formulas

f(x)

Figure 6.1. Polynomial approximation of f(x).
Consider the definite integral

b
/ f(x)dx (6.1)

We divide the range of integration (a, b) into n — 1 equal intervals of length h =
(b —a)/(n—1) each, as shown in Fig. 6.1, and denote the abscissas of the resulting
nodes by x, xz, ..., x,. Next, we approximate f(x) by a polynomial of degree n — 1
that intersects all the nodes. Lagrange’s form of this polynomial, Eq. (4.1a), is

Ppa(x) =) f)i(x)

i=1
where ¢;(x) are the cardinal functions defined in Eq. (4.1b). Therefore, an approxima-
tion to the integral in Eq. (6.1) is

b n b n
I= / P (x)dx = Z |:f(xi)/ Ei(x)dxi| = ZAif(xi) (6.2a)
a @ i=1

i=1

where
b
A; = / Lix)dx, i=1,2,...,n (6.2b)
a

Equations (6.2) are the Newton—Cotes formulas. Classical examples of these formulas
are the trapezoidal rule (n = 2), Simpson’s rule (n = 3), and 3/8 Simpson's rule (n = 4).
The most important of these is trapezoidal rule. It can be combined with Richardson
extrapolation into an efficient algorithm known as Romberg integration, which makes
the other classical rules somewhat redundant.
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Trapezoidal Rule

fx)

|

Figure 6.2. Trapezoidal rule.

Area =1/

B

9
I
o>
<

X,=a

Ifn=2,wehave ¢; = (x — x3) /(X1 — X2) = —(x — b)/ h. Therefore,

(b—a)2=lj

1P 1
"~ 2h 2

A1=_7z ’ (x—b)dx

Also, &, = (x — x1)/ (%, — x1) = (x — a)/ h, so that

1 b 1 , h
Ag_ﬁ/c; (x—a)dx_ﬁ(b—a) =3

Substitution in Eq. (6.2a) yields

h
I=[f@+fb)] 5 (63)

which is known as the trapezoidal rule. It represents the area of the trapezoid in
Fig. (6.2).
The error in the trapezoidal rule

b
E:f f@dx— 1

is the area of the region between f(x) and the straight-line interpolant, as indicated
in Fig. 6.2. It can be obtained by integrating the interpolation error in Eq. (4.3):

1 (b 1 b
E=2 / (= x)(x = x) f'(§)dx = 5 f7(8) / (x —a)(x — b)dx

——l(b— ) //()__h3 "(&) (6.4)
=—pb-a @ =-51¢ :

Composite Trapezoidal Rule

In practice the trapezoidal rule is applied in a piecewise fashion. Figure 6.3 shows
the region (a, b) divided into n — 1 panels, each of width A. The function f(x) to be
integrated is approximated by a straight line in each panel. From the trapezoidal rule
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f(x)

I

|

|

| |
X X X;
a

Figure 6.3. Composite trapezoidal rule.

|
o
T
|
HH'
X

we obtain for the approximate area of a typical (ith) panel
h
L= [f(x) + f(xi1)] 3

Hence total area, representing f: fx)dx, is

n—1
I=Y"I=[f(x)+2f(x) +2f(xs) + - + 2f(xa-1) + f(xn)]

i=1

(6.5)

NS

which is the composite trapezoidal rule.
The truncation error in the area of a panel is — see Eq. (6.4)

h®
E = _ﬁf &

where &; lies in (x;, x;;1). Hence the truncation error in Eq. (6.5) is

E=Y E= Z Q) (a)

But

n—1

Zf//(%.i) — (n _ 1) f'//

i=1

where f” is the arithmetic mean of the second derivatives. If f’(x) is continuous,
there must be a point & in (a, b) at which (&) = f”, enabling us to write

Z ffE)=m-1f'E&= f”(&)

i=1
Therefore, Eq. (a) becomes

b — a)h?
B! ”) (3 6.6)
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It would be incorrect to conclude from Eq. (6.6) that E = ch? (cbeing a constant),
because f”(£) is not entirely independent of k. A deeper analysis of the error'' shows
that if f(x) and its derivatives are finite in (a, b), then

E:C1h2+C2h4+C3h6+~-- (67)

Recursive Trapezoidal Rule

Let I; be the integral evaluated with the composite trapezoidal rule using 2¢~! panels.
Note that if k is increased by one, the number of panels is doubled. Using the notation

H=b-a

Eq. (6.5) yields the following results for k = 1, 2, and 3.
k =1 (1 panel):

H
I = [fla) + f(b)] > (6.8)
k = 2 (2 panels):
H H 1 H\ H
b= [f(a) +2f(a T 5) +f(b)] T=lh +f<a+ 5) >
k = 3 (4 panels):
H H 3H H
L= [f(a)+2f<a+—> +2f<a+—> +2f<a+—) +f(b)] ry
4 2 4 8
1 H 3H\| H
= 512+[f<a+z)+f<a+7>}z
We can now see that for arbitrary k > 1 we have
1 H 22 2i—1)H
i=1

which is the recursive trapezoidal rule. Observe that the summation contains only
the new nodes that were created when the number of panels was doubled. Therefore,
the computation of the sequence I, b, L, .. ., Iy from Egs. (6.8) and (6.9) involves the
same amount of algebra as the calculation of I directly from Eq. (6.5). The advantage
of using the recursive trapezoidal rule that allows us to monitor convergence and
terminate the process when the difference between I;_; and I becomes sufficiently
small. A form of Eq. (6.9a) that is easier to remember is

1
I(h) = 5 1@2h) + Ry fnew) (6.9b)

where h = H/(n — 1) is the width of each panel.

11 The analysis requires familiarity with the Euler-Maclaurin summation formula, which is covered
in advanced texts.
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6.2 Newton-Cotes Formulas

B trapezoid

The function trapezoid computes I(h), given I(2h) using Egs. (6.8) and (6.9). We
can compute fab f(x) dx by calling trapezoid repeatedly with k = 1, 2, ..., until the
desired precision is attained.

function Ih = trapezoid(func,a,b,I2h,k)

% Recursive trapezoidal rule.

% USAGE: Th = trapezoid(func,a,b,I2h,k)

% func = handle of function being integrated.
% a,b
% I2h = integral with 2" (k-1) panels.

limits of integration.

% Ih = integral with 2"k panels.

if k == 1
fa = feval(func,a); fb = feval(func,b);
Th = (fa + fb)*(b - a)/2.0;

else
n=2"(k -2 ); % Number of new points
h= (b - a)/n ; % Spacing of new points
x =a + h/2.0; % Coord. of 1st new point

sum = 0.0;

for i = 1:n
fx = feval(func,x);
sum = sum + fx;
X = X + h;

end

Ih = (I2h + h*sum)/2.0;

end

Simpson’s Rules

Simpson’s 1/3 rule can be obtained from Newton-Cotes formulas with n = 3; that is,
by passing a parabolic interpolant through three adjacent nodes, as shown in Fig. 6.4.
The area under the parabola, which represents an approximation of f : f(x) dx, is (see
derivation in Example 6.1)

I=|f@+ar (2 4 | 2 @
s (7)< 1w

To obtain the composite Simpson’s 1/3 rule, the integration range (a, b) is divided
into n — 1 panels (n odd) of width h = (b — a)/(n — 1) each, as indicated in Fig. 6.5.
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Numerical Integration

Parabola
W T

2

I
I
& : Figure 6.4. Simpson’s 1/3 rule.

x,=a X5 X3=b

Applying Eq. (a) to two adjacent panels, we have

Xit2 h
f0) dx = [ f(x) +4f(Xip1) + f(Xi2) ] 3 (b)
Substituting Eq. (b) into
b Xn n-2 Xtz
/ fodx = / f)dx = Z [ f(x)dx}
4 X i=1,3,... U %
yields
b
/ f@dx = I=[f(x1) +4f(x2) +2f(x3) +4f(xs) + - - (6.10)

h
w2 f(xn-2) +4f(xp-1) + f(x)] 3

The composite Simpson’s 1/3 rule in Eq. (6.10) is perhaps the best-known method of
numerical integration. Its reputation is somewhat undeserved, since the trapezoidal
rule is more robust, and Romberg integration is more efficient.

The error in the composite Simpson’s rule is

(b—a)h*
E=-"——f®W 6.11
180 Y@ (6.11)
from which we conclude that Eq. (6.10) is exact if f(x) is a polynomial of degree three
or less.
fix)
| |
|
| |"h"|"h"| Figure 6.5. Composite Simpson’s 1/3
| | | | | rule.
| |
| | | | 1 | X
X X X X X,
a b
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6.2 Newton-Cotes Formulas

Simpson’s 1/3 rule requires the number of panels to be even. If this condition is
not satisfied, we can integrate over the first (or last) three panels with Simpson’s 3/8
rule:

3h
I'=[f0n) +3f(0) +3f(s) + fow)] - (6.12)

and use Simpson’s 1/3 rule for the remaining panels. The error in Eq. (6.12) is of the
same order as in Eq. (6.10).

EXAMPLE 6.1
Derive Simpson’s 1/3 rule from Newton-Cotes formulas.

Solution Referring to Fig. 6.4, Simpson’s 1/3 rule uses three nodes located at x; = a,
X» = (@ + b) /2, and x3 = b. The spacing of the nodes is & = (b — a)/2. The cardinal
functions of Lagrange’s three-point interpolation are — see Section 4.2

0(x) = (x —x2)(x — x3) () = (x —x1)(x — x3)
! (X1 — x2) (X1 — x3) 2 (X2 — x1) (2 — x3)

(x = x1)(x — x2)

Y2 =
3 = e T — )

The integration of these functions is easier if we introduce the variable &£ with origin
at x;. Then the coordinates of the nodes are &, = —h, £, =0, £5 = h, and Eq. (6.2b)
becomes A; = fub 2i(x) = ffh 0;(£)dt. Therefore,

_[ME-0E-h, K
Al_/;hm 2h2/ (% — h&)dg = 3
hE+hE - n, B h
Sl T ~ h)de = =
2T /_h () f(s Wds =
_["EtnE-0
AS_/;hW 2h2/ & +h§)dg_,

Equation (6.2a) then yields

I= ZA i fx) = [f(a) +4f<a+b) +f(b)} g

i=1

which is Simpson’s 1/3 rule.

EXAMPLE 6.2
Evaluate the bounds on f(f sin(x) dx with the composite trapezoidal rule using (1)
eight panels and (2) sixteen panels.

Solution of Part (1) With eight panels there are nine nodes spaced at h = 7 /8. The
abscissas of the nodesare x; = i — 1)z /8, i=1,2,...,9. From Eq. (6.5) we get

I=|sin0+2 sm— sin — =1.97423
|: + ; + n:| 16
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Numerical Integration

The error is given by Eq. (6.6):

(b= a)h2 " (r —0)(/8)* . 7®
E=——17—f')= T(—Slné) ﬁsms

where 0 < £ < 7. Since we do not know the value of &, we cannot evaluate E, but we
can determine its bounds:

3 3

T T T
Eon = ——sin(0) =0 E T sinZ = 0.04037
min = Zeg SIN(0) max = Zeg SN 3

Therefore, I + Emin < f; sin(x) dx < I + Epay, OF
T
1.97423 < / sin(x) dx < 2.01460
0

The exact integral is, of course, I = 2.

Solution of Part (2) The new nodes created by doubling of panels are located at
midpoints of the old panels. Their abscissas are

Xj=n/16+( — /8= @2j —r/16, j=1,2,...,8

Using the recursive trapezoidal rule in Eq. (6.9b), we get

8 .
197423 = . (2] —-Drn
= —— + — E —— =1.
> + 16 2 sin 16 99358

and the bounds on the error become (note that E is quartered when h is halved)
Emin = 0, Emax = 0.04037/4 = 0.010 09. Hence

b1
1.99358 < / sin(x) dx < 2.003 67
0

EXAMPLE 6.3
Estimate f02'5 f(x) dx from the data

X 0 0.5 1.0 1.5 2.0 2.5
f(x) || 1.5000 | 2.0000 | 2.0000 | 1.6364 | 1.2500 | 0.9565

Solution We will use Simpson’s rules, since they are more accurate than the trape-

zoidal rule. Because the number of panels is odd, we compute the integral over the

first three panels by Simpson’s 3/8 rule, and use the 1/3 rule for the last two panels:

3(0.5)

I = [f(0) +3f(0.5) + 3f(1.0) + f(1.5)] —— 8

0.5

+[f(1.5) + 4f(2.0) + f(2.5)] 5

= 2.8381 + 1.2655 = 4.1036

EXAMPLE 6.4
Use the recursive trapezoidal rule to evaluate foﬂ /X cos x dx to six decimal places.
How many function evaluations are required to achieve this result?
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6.2 Newton-Cotes Formulas

Solution The program listed below utilizes the function trapezoid. Apart from the
value of the integral, it displays the number of function evaluations used in the com-
putation.

% Example 6.4 (Recursive trapezoidal rule)
format long % Display extra precision
func = @(x) (sqrt(x)*cos(x));
I2h = 0;
for k = 1:20
Th = trapezoid(func,0,pi,I2h,k);
if (k > 1 & abs(Ih - I2h) < 1.0e-6)
Integral = TIh
No_of_func_evaluations = 2" (k-1) + 1
return
end
I2h = TIh;
end

error(’Too many iterations’)

Here is the output:

>> Integral =
-0.89483166485329
No_of_func_evaluations =
32769

Rounding to six decimal places, we have fo” Jxcosxdx = —0.894 832

The number of function evaluations is unusually large in this problem. The slow
convergence is the result of the derivatives of f(x) being singular at x = 0. Con-
sequently, the error does not behave as shown in Eq. (6.7): E = c;h? + coh* + - - -,
but is unpredictable. Difficulties of this nature can often be remedied by a change
in variable. In this case, we introduce ¢ = /%, so that dt = dx/(2./x) = dx/(2t), or
dx = 2t dt. Thus

x N
/ Jxcosxdx :/ 2t% cos t2dt
0 0

Evaluation of the integral on the right-hand side would require 4097 function
evaluations.
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Numerical Integration
Romberg Integration

Romberg integration combines the composite trapezoidal rule with Richardson ex-
trapolation (see Section 5.3). Let us first introduce the notation

Ry =1

where, as before, I; represents the approximate value of fab f(x)dx computed by the
recursive trapezoidal rule using 2:~! panels. Recall that the error in this approxima-
tionis E = ¢ h? + c,h* + - - -, where
b—a
"=
is the width of a panel.

Romberg integration starts with the computation of R;; = I; (one panel) and
R, = L (two panels) from the trapezoidal rule. The leading error term c, h? is then
eliminated by Richardson extrapolation. Using p = 2 (the exponent in the error term)
in Eq. (5.9) and denoting the result by R, ,, we obtain

22R,1— R, 4 1

R2,2 = T = §R2,1 — gRl,l (a)

It is convenient to store the results in an array of the form

Ry
Ry Rop

The next step is to calculate R;; = I3 (four panels) and repeat Richardson ex-
trapolation with R, ; and Rs;, storing the result as Rs »:

4 1
Ryo=—-—R3;——-R b
32 = g fs1 = gl (b)

The elements of array R calculated so far are

R
Ry Rop
R31 Rsp

Both elements of the second column have an error of the form ¢, h*, which can also
be eliminated with Richardson extrapolation. Using p = 4 in Eq. (5.9), we get

_2'R3p— Rop

16 1
Rs33 = —

— P Ryp— —R
i 1 15 B2 = 15 Re (©

This result has an error of O(hS). The array has now expanded to

Ry,
Ry Rop
R31 R3p Rz
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6.3 Romberg Integration

After another round of calculations we get

Ry

Ry Rop

Rs1 Rsz Rsgs

Ry1 Ryp Rys Ry

where the error in Ry 4 is O(h®). Note that the most accurate estimate of the integral
is always the last diagonal term of the array. This process is continued until the differ-
ence between two successive diagonal terms becomes sufficiently small. The general
extrapolation formula used in this scheme is

i—1
47T Rij1— R i

" T , i>1, j=2,3,...,i (6.13a)
A pictorial representation of Eq. (6.13a) is
Ri_1,j1
N
o (6.13b)
N\

R] 8- R

where the multipliers « and 8 depend on j in the following manner

il 2 3 4 5 6
a | -1/3 -1/15 -1/63 —1/255 —1/1023 (6.13c)
B | 4/3 16/15 64/63 256/255 1024/1023

The triangular array is convenient for hand computations, but computer imple-
mentation of the Romberg algorithm can be carried out within a one-dimensional
array r. After the first extrapolation — see Eq. (a) — R;,; is never used again, so that it
can be replaced with R, ,. As a result, we have the array

rn=2~R,
2= Ry

In the second extrapolation round, defined by Egs. (b) and (c), Rs, overwrites R,
and Rs 3 replaces Ry, so that the array now contains

" =R33
2= Rz
r3 = Rz

and so on. In this manner, r; always contains the best current result. The extrapola-
tion formula for the kth round is
_ A -y

=gy J=k-Lk-2..,1 (6.14)
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Numerical Integration

B romberg

The algorithm for Romberg integration is implemented in the function romberg. It
returns the value of the integral and the required number of function evaluations.
Richardson’s extrapolation is performed by the subfunction richardson.

function [I,numEval] = romberg(func,a,b,tol,kMax)
% Romberg integration.
% USAGE: [I,numEval] = romberg(func,a,b,tol,kMax)

% INPUT:

% func = handle of function being integrated.

% a,b = limits of integration.

% tol = error tolerance (default is 1.0e4*eps).
% kMax = limit on the number of panel doublings
% (default is 20).

% OUTPUT:

% I = value of the integral.

% numEval = number of function evaluations.

if nargin < 5; kMax = 20; end
if nargin < 4; tol = 1.0e4*eps; end
r = zeros(kMax);
r(l) = trapezoid(func,a,b,0,1);
r0ld = r(1);
for k = 2:kMax
r(k) = trapezoid(func,a,b,r(k-1),k);
r = richardson(r,k);
if abs(r(l) - r0ld) < tol
numEval = 2°(k-1) + 1; I = r(1);
return
end
r0ld = r(1);
end

error(’Failed to converge’)

function r = richardson(r,k)
% Richardson’s extrapolation in Eq. (6.14).
for j = k-1:-1:1
¢ = 47(k-J); (3> = (c*r(j+1) - r(Jd)/(c-1);
end

EXAMPLE 6.5
Show that Ry, in Romberg integration is identical to composite Simpson’s 1/3 rule in
Eq. (6.10) with 2%¥~! panels.
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6.3 Romberg Integration

Solution Recall that in Romberg integration Ry; = I denoted the approximate in-
tegral obtained by the composite trapezoidal rule with 2¥~! panels. Denoting the ab-
scissas of the nodes by x;, x3, .. ., x,, we have from the composite trapezoidal rule in
Eq. (6.5)

= 1 h
Ry = I = [f(xl) +2) fla) + S fl) | 5
i=2

When we halve the number of panels (panel width 2/), only the odd-numbered ab-
scissas enter the composite trapezoidal rule, yielding

n—2
Ri11= k1 = |:f(x1) +2 Z fx) +f(xn):| h

i=3,5,...

Applying Richardson extrapolation yields

4 1
Ri» = -Ri1 — - R
k2 = 31— g -1

. (x)+4 rf f(x-)+2 ni% f(x-)+1f(x) h
§f1 g i g i g n

i=2,4,... i=3,5,...

which agrees with Simpson’s rule in Eq. (6.10).

EXAMPLE 6.6
Use Romberg integration to evaluate f(f f(x) dx, where f(x) = sin x. Work with four
decimal places.

Solution From the recursive trapezoidal rule in Eq. (6.9b), we get

Rii = 160) = 2 [fO) + fm)] = 0
Ry = I(n/2) = %I(n) + 7 fn/2) = 15708
1
Ryy = IGu/4) = 5 1(t/2) + % (£ /4) + fBr/4)] = 1.8961

1
Riy = I01/8) = ~I(x/4) + % [f0r/8) + f37/8) + f(5r/8) + f(77/8)]

2

=1.9742
Using the extrapolation formulas in Egs. (6.13), we can now construct the following
table:

Ry 0

Roi Ry | 15708 2.0944

Rs1 Rss Rss T 11.8961 2.0046 1.9986

Ri1 Riz Risz Rus 1.9742 2.0003 2.0000 2.0000

It appears that the procedure has converged. Therefore, foﬂ sinxdx = Ry 4 = 2.0000,
which is, of course, the correct result.



www.MatlabKar.com e b (3l 4t - e 35901 - IS e ol

Numerical Integration

EXAMPLE 6.7
Use Romberg integration to evaluate foﬁ 2x? cos x? dx and compare the results with
Example 6.4.

Solution We use the following program:

% Example 6.7 (Romberg integration)

format long

func = @(x) (2*(x"2)*cos(x"2));
[Integral,numEval] = romberg(func,0,sqrt(pi))

The results are

Integral =
-0.89483146948416
numEval =
257

Itis clear that Romberg integration is considerably more efficient than the trape-
zoidal rule. It required 257 function evaluations as compared to 4097 evaluations with
the composite trapezoidal rule in Example 6.4.

PROBLEM SET 6.1

0”/4 In(1 + tan x)dx. Explain the

1. Use the recursive trapezoidal rule to evaluate
results.

2. The table shows the power P supplied to the driving wheels of a car as a function
of the speed v. If the mass of the car is m = 2000 kg, determine the time At it
takes for the car to accelerate from 1 m/s to 6 m/s. Use the trapezoidal rule for
integration. Hint:

6s
At=m (v/P)dv
1s
which can be derived from Newton's law F = m(dv/dt) and the definition of
power P = Fu.

v(m/s) | 0| 1.0 18| 24| 35| 44 5.1 6.0
P&w) || 0] 4.7 | 122 | 19.0 | 31.8 | 40.1 | 43.8 | 43.2

3. Evaluate f_ll cos(2 cos™! x)dx with Simpson’s 1/3 rule using 2, 4, and 6 panels.
Explain the results.

4. Determine [, (1 + x*)~'dx with the trapezoidal rule using five panels and com-
pare the result with the “exact” integral 0.243 75. Hint: Use the transformation
x3=1/1.
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6.3 Romberg Integration

5.

h

The table below gives the pull F of the bow as a function of the draw x. If the bow
is drawn 0.5 m, determine the speed of the 0.075-kg arrow when it leaves the bow.
Hint: The kinetic energy of arrow equals the work done in drawing the bow; that
. 2 0.5m

is, mv</2 = [, Fdx.

x (m) || 0.00 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25
F (N) 0 37 71 | 104 | 134 | 161
x(m) || 0.30 | 0.35 | 0.40 | 0.45 | 0.50
F(N) 185 | 207 | 225 | 239 | 250

6. Evaluate f02 (x° 4+ 3x® — 2) dx by Romberg integration.
7. Estimate foﬂ f(x) dx as accurately as possible, where f(x) is defined by the data

b 0 /4 /2 37 /4 b4
fx) 1.0000 | 0.3431 | 0.2500 | 0.3431 | 1.0000
8. Evaluate
lsin x
dx
o VX

with Romberg integration. Hint: Use transformation of variable to eliminate the
singularity at x = 0.

9. Show that if y = f(x) is approximated by a natural cubic spline with evenly
spaced knots at x;, X, ..., X;, the quadrature formula becomes

h
I= 5(y1+2yz+2y3+~--+2yn_1+yn)
hS
—ﬂ(kl+2k2+k3+~~+2k,,_1+kn)

where h is the spacing of the knots and k = y”. Note that the first part is the
composite trapezoidal rule; the second part may be viewed as a “correction” for
curvature.
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10. W Use a computer program to evaluate

/IT/4 dx
0 +/sinx
with Romberg integration. Hint: Use the transformation sin x = 2.

11. B The period of a simple pendulum of length Lis t = 4,/L/gh(6,), where gis the
gravitational acceleration, 6, represents the angular amplitude, and

/2
h(6o) :/
0 \/l — sin®

Compute h(15°), h(30°), and h(45°), and compare these values with h(0) = 7 /2
(the approximation used for small amplitudes).
12. m

ae

(6o/2) sin’ 6

r

The figure shows an elastic half-space that carries uniform loading of intensity g
over a circular area of radius a. The vertical displacement of the surface at point
P can be shown to be

™/2 cos2 9
w(r) = wO/ r>a
0

—_—df >
\/ (r/a)? —sin®6

where wy is the displacement at r = a. Use numerical integration to determine
w/wy atr = 2a.
13. m

The mass mis attached to a spring of free length b and stiffness k. The coefficient
of friction between the mass and the horizontal rod is i. The acceleration of the
mass can be shown to be (you may wish to prove this) ¥ = — f(x), where

k b
fx)=nug+ m(u +x)< b2+x2>
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6.3 Romberg Integration

If the mass is released from rest at x = b, its speed at x = 0 is given by

[ rb
Uy = 2/ fodx
0

Compute vy by numerical integration using the data m = 0.8 kg, b =0.4 m,
u=0.3,k=80N/m,and g =9.81 m/s?.
14. W Debye’s formula for the heat capacity Cy or a solid is Cy = 9 Nkg(u), where

1/u 4 ,x
gu) = u3/ _XC
o

ex —1)?

The terms in this equation are

N = number of particles in the solid
k = Boltzmann constant

u=T/Op

T = absolute temperature

®p = Debye temperature

Compute g(u) from u = 0 to 1.0 in intervals of 0.05 and plot the results.
15. W A power spike in an electric circuit results in the current

i(t) = ipe " sin(2t/ 1)
across a resistor. The energy E dissipated by the resistor is
E= / R[i®] dt
0

Find E using the data iy = 100A, R = 0.5, and #p = 0.01s.
16. W An alternating electric current is described by

. . . Tt . 2xwt
i(f) =ip | sin — — Bsin —
l'() to

whereiy = 1A, tp = 0.05s, and 8 = 0.2. Compute the root-mean-square current,

defined as
1 (o
Irms = —/ i2(r) dt
I Jo

17. W (a) Derive the composite trapezoidal rule for unevenly spaced data. (b) Con-
sider the stress—strain diagram obtained from a uniaxial tension test.
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Rupture

0

The area under the diagram is

A= /
=0

o de

\

\

|

|

|
€

€

where ¢, is the strain at rupture. This area represents the work that must be per-
formed on a unit volume of the test specimen in order to cause rupture; it is
called the modulus of toughness. Use the result of Part (a) to estimate the modu-
lus of toughness for nickel steel from the following test data:

o (MPa) | e
586 | 0.001
662 | 0.025
765 | 0.045
841 | 0.068
814 | 0.089
122 | 0.122
150 | 0.150

Note that the spacing of data is uneven.

Gaussian Integration

Gaussian Integration Formulas

We found that Newton-Cotes formulas for approximating fab fx)dx work best is f(x)
is a smooth function, such as a polynomial. This is also true for Gaussian quadrature.
However, Gaussian formulas are also good at estimating integrals of the form

b
/ w(x) f(x)dx

(6.15)

where w(x), called the weighting function, can contain singularities, as long as they
are integrable. An example of such integral is fol (1 + x?) In x dx. Sometimes infinite

limits, as in f0°° e *sin x dx, can also be accommodated.
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6.4 Gaussian Integration

Gaussian integration formulas have the same form as Newton—Cotes rules

I=Y Aif(x) (6.16)

i=1

where, as before, I represents the approximation to the integral in Eq. (6.15). The dif-
ference lies in the way that the weights A; and nodal abscissas x; are determined. In
Newton—Cotes integration the nodes were evenly spaced in (a, b), that is, their loca-
tions were predetermined. In Gaussian quadrature the nodes and weights are chosen

so that Eq. (6.16) yields the exact integral if f(x) is a polynomial of degree 2n — 1 or
less; that is,

b n
/ w(x) Pp(x)dx = ZA,-Pm(xi), m=<2n-1 (6.17)
a i=1

One way of determining the weights and abscissas is to substitute P (x) = 1, P, (x) =
X, ..., Py_1(x) = x> 1 in Eq. (6.17) and solve the resulting 2n equations

b n )
/ wx)x! dx = ZAixi’, j=0,1,...,2n—1
a

i=1
for the unknowns A; and x;,i =1,2, ..., n.

As an illustration, let w(x) = e *, a =0, b = 0o, and n = 2. The four equations
determining x;, x,, A;, and A, are

o0
/ e Ydx =A,+ A,
0
1
/ e xdx = A1x1 + Az xn
0
1
/ e xtdx = A1 x? + Ayxt
0

/01 e xPdx = A1 x5} + A
After evaluating the integrals, we get
Al +A =1
A1x1 +Ax =1
A 4 Apxs =2
A+ A =6

The solution is

V241

22

V2-1
22

X1:2—\/§ A4

X =2+~2 A=
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Name Symbol | a b w(x) fab w(x) [gan(x)]2 dx
Legendre Pn(X) -1] 1 1 2/2n+1)
Chebyshev | T,(x) 1] 1| Q=x>"12 7/2 (n>0)
Laguerre L,(x) 0| oo e 1
Hermite Hy(x) | —o0 | o0 e Jr2"n!
Table 6.1
so that the quadrature formula becomes
00 . 1
/0 e fx)dx ~ ﬁ[(«/i+ 1)f(2—«/§) + (W2 - 1)f(2+«/§)]

Due to the nonlinearity of the equations, this approach will not work well for
large n. Practical methods of finding x; and A; require some knowledge of orthogo-
nal polynomials and their relationship to Gaussian quadrature. There are, however,
several “classical” Gaussian integration formulas for which the abscissas and weights
have been computed with great precision and tabulated. These formulas can be used
without knowing the theory behind them, since all one needs for Gaussian integra-
tion are the values of x; and A;. If you do not intend to venture outside the classical
formulas, you can skip the next two topics.

*Orthogonal Polynomials

Orthogonal polynomials are employed in many areas of mathematics and numerical
analysis. They have been studied thoroughly and many of their properties are known.
What follows is a very small compendium of a large topic.

The polynomials ¢, (x), n =0, 1, 2, ... (nis the degree of the polynomial) are said
to form an orthogonal set in the interval (a, b) with respect to the weighting function
w(x) if

b
/ WX)@ (X, (x)dx =0, m+#n (6.18)

The set is determined, except for a constant factor, by the choice of the weighting
function and the limits of integration. That is, each set of orthogonal polynomials
is associated with certain w(x), a, and b. The constant factor is specified by stan-
dardization. Some of the classical orthogonal polynomials, named after well-known
mathematicians, are listed in Table 6.1. The last column in the table shows the stan-
dardization used.

Orthogonal polynomials obey recurrence relations of the form

An@pi1(X) = by + cuX) @, (%) — dnp,_1(x) (6.19)

If the first two polynomials of the set are known, the other members of the set can be
computed from Eq. (6.19). The coefficients in the recurrence formula, together with
¢ (x) and ¢; (x) are given in Table 6.2.
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Name ©o(X) | ¢1(x) a, b, Cn d,
Legendre 1 x n+1 0 2n+1 | n
Chebyshev 1 b 1 0 2 1
Laguerre 1 l-x|n+1|2n+1 -1 n
Hermite 1 2x 1 0 2 2

Table 6.2

The classical orthogonal polynomials are also obtainable from the formulas

palny = CD° 4 [1-=)"]

2mn! dx"

T,(x) = cos(ncos™'x), n>0

er d" Ly
L,(x) = T (x"e™) (6.20)
2 dn 2
H,(x) = (-1)"e* ﬁ(e—x )
dx
and their derivatives can be calculated from
(1 = x*) pp(x) = n[—xpa(X) + pu_1(0)]
1= Tx) = n[-xT,(x) + nT,1(0)]
xL;,(x) = n[Ly(x) — Ly (x)] (6.21)

H)(x) = 2nH,_; (x)

Other properties of orthogonal polynomials that have relevance to Gaussian in-
tegration are:

¢, (x) has nreal, distinct zeros in the interval (a, b).
The zeros of ¢,,(x) lie between the zeros of ¢,, 1 (x).
Any polynomial P,(x) of degree n can be expressed in the form

Py(0) =) Goi(x) (6.22)
i=0

It follows from Eq. (6.22) and the orthogonality property in Eq. (6.18) that

b
/ w(x) Py (X)¢pym(x)dx =0, m=>0 (6.23)

*Determination of Nodal Abscissas and Weights
Theorem The nodal abscissas x;, x», . .., X, are the zeros of the polynomial ¢, (x) that
belongs to the orthogonal set defined in Eq. (6.18).

Proof We start the proof by letting f(x) = P,,_1(x) be a polynomial of degree 2n — 1.
Since the Gaussian integration with 7 nodes is exact for this polynomial, we
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have
b n
[ W Pasodx = 30 AP ) (@
a i=1

A polynomial of degree 2n — 1 can always be written in the form
P 1(x) = Qn-1(x) + Ry (X) g, (x) (b)

where Q,_;(x), R,_1(x), and ¢,,(x) are polynomials of the degree indicated by
the subscripts.'? Therefore,

b b b
/ w(x) Py (X)dx = / w(x) Qu_1(x)dx + / w(x) Ry—1 (), (x)dx

But according to Eq. (6.23) the second integral on the right-hand side vanishes,
so that

b b
/ w(x) Py (x)dx = / w(x) Qp_1(x)dx ()

Because a polynomial of degree n — 1 is uniquely defined by 7 points, it is al-
ways possible to find A; such that

b n
| w60 Qs 0dx = 3 41 Qua) @
a i=1

In order to arrive at Eq. (a), we must choose for the nodal abscissas x; the roots
of ¢,,(x) = 0. According to Eq. (b) we then have

P2n—1(xi) = Qn(xi)y l= ]-y 2)~-~)n (e)
which together with Egs. (c) and (d) leads to
b b n
[ w0 P = [ w0 Quatodx = Y- AP
4 4 i=1
This completes the proof.
Theorem

b
Aj; :/ wx);(x)dx, i=12,...,n (6.24)

where ¢;(x) are the Lagrange’s cardinal functions spanning the nodes at
X1, X2, . .. X,. These functions were defined in Eq. (4.2).

Proof Applying Lagrange’s formula, Eq. (4.1), to Q(x) yields

Qua(x) = Z Q1 (x)4;(x)

i=1

12 Tt can be shown that Q,(x) and R, (x) are unique for given Py, (x) and ¢, (x).
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which upon substitution in Eq. (d) gives us

n b n
3 [in(xl-) / w(x)zi(x)dx} =3 A Qe ()
i=1 a i=1

or

n b
Z Qn—1(x) |:Ai —/ w(x)ei(x)dx] =0
i=1 a

This equation can be satisfied for arbitrary Q(x) of degree n only if

b
Ai—/ wx)li(x)dx=0, i=1,2,...,n
a

which is equivalent to Eq. (6.24).

It is not difficult to compute the zeros x;, i = 1,2, ..., n of a polynomial ¢, (x)
belonging to an orthogonal set by one of the methods discussed in Chapter 4. Once
the zeros are known, the weights A;, i =1, 2, ..., n could be found from Eq. (6.24).
However the following formulas (given without proof) are easier to compute

2
Gauss-Legendre A;j= ———F——
(1= x7) [ph(x)]
1
Gauss-Laguerre A;= —— (6.25)
xi [ Ly, (x)]
ont+lyl
Gauss-Hermite A; = %
[H,(x)]

Abscissas and Weights for Gaussian Quadratures

We list here some classical Gaussian integration formulas. The tables of nodal ab-
scissas and weights, covering n = 2 to 6, have been rounded off to six decimal places.
These tables should be adequate for hand computation, but in programming you
may need more precision or a larger number of nodes. In that case you should con-
sult other references,'® or use a subroutine to compute the abscissas and weights
within the integration program.'*

The truncation error in Gaussian quadrature

h n
E= / w(x) f(x)dx — ZAif(xi)
a i=1

13- Abramowitz, M., and Stegun, I.A., Handbook of Mathematical Functions, Dover Publications, New
York, 1965; Stroud, A.H., and Secrest, D., Gaussian Quadrature Formulas, Prentice-Hall, New York,
1966.

14 Geveral such subroutines are listed in Press, W.H. et al., Numerical Recipes in Fortran 90, Cam-
bridge University Press, New York, 1996.
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has the form E = K(n) f®"(c), where a < ¢ < b (the value of ¢ is unknown; only its
bounds are given). The expression for K(n) depends on the particular quadrature
being used. If the derivatives of f(x) can be evaluated, the error formulas are useful
in estimating the error bounds.

Gauss-Legendre Quadrature

1 n
/ J®)ds ~ D AfE) (6.26)
i=1
+§; Aj +§; Aj
n=2 n=4
0.577 350 1.000 000 | 0.000000 0.568 889
n=2 0.538469 0.478 629
0.000 000 0.888889 | 0.906 180 0.236927
0.774 597 0.555 556 n==6
n=4 0.238619 0.467914
0.339981 0.652145 | 0.661 209 0.360762
0.861 136 0.347855 | 0.932470 0.171324

Table 6.3

This is the most often used Gaussian integration formula. The nodes are ar-
ranged symmetrically about ¢ = 0, and the weights associated with a symmetric pair
of nodes are equal. For example, for n = 2, we have &§; = —&, and A; = A,. The trun-
cation error in Eq. (6.26) is

2n+1 4
E= Lm)sf@m(c), -l<c<l1 (6.27)
@n+1)[2n)]

To apply Gauss-Legendre quadrature to the integral fab f(x)dx, we must first map
the integration range (a, b) into the “standard” range (—1, 1). We can accomplish this
by the transformation

v b+a n b—a
2 2
Now dx = d& (b — a)/2, and the quadrature becomes

& (6.28)

fbf(x)dx~ b-a iA-f(x-) (6.29)
a C oz i=1 o -

where the abscissas x; must be computed from Eq. (6.28). The truncation error here
is
(b — a)2n+1 (n!)4

E= 3
2n+1)[2n)]

f@), a<c<b (6.30)
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Gauss—Chebyshev Quadrature
1 n
/ (1-x2) " foydx ~ % 3 f) 6.31)
-1 i=1

Note that all the weights are equal: A; = n/n. The abscissas of the nodes, which are
symmetric about x = 0, are given by

% =cos &7 (6.32)
2n
The truncation error is
E= 22]12(72’”)! fe@, —1<c<1 (6.33)
Gauss-Laguerre Quadrature
00 n
/O e *fdx =Y Aif(x) (6.34)
i=1
X A; X; A;
n=2 n=>5
0.585 786 0.853554 | 0.263560 0.521756
3.414214 0.146447 | 1.413403 0.398 667
n=3 3.596 426 (—1)0.759 424
0.415775 0.711093 | 7.085810 (—2)0.361175
2.294 280 0.278517 | 12.640801 (—4)0.233670
6.289 945 (=1)0.103 892 n==6
n=4 0.222 847 0.458 964
0.322548 0.603154 | 1.188932 0.417 000
1.745761 0.357418 | 2.992736 0.113373
4.536 620 (-1)0.388791 | 5.775144 (—=1)0.103 992
9.395071 (—=3)0.539295 | 9.837467 (—3)0.261017
15.982 874 (—6)0.898 548

Table 6.4. Multiply numbers by 10%, where k is given in parenthesis

(n!)z @n
= wf (0, 0<c<o0 (6.35)

Gauss—Hermite Quadrature:

/ e fx)dx ~ Y Aif(x) (6.36)
- i=1



www.MatlabKar.com e b (3l 4t - e 35901 - IS e ol

Numerical Integration

The nodes are placed symmetrically about x = 0, each symmetric pair having the

same weight.
+x; A; +x; Aj
n=2 n=5
0.707 107 0.886227 | 0.000000 0.945308
n=3 0.958572 0.393619
0.000 000 1.181636 | 2.020183 (—1)0.199532
1.224745 0.295409 n==6
n=4 0.436077 0.724 629
0.524 648 0.804914 | 1.335849 0.157 067
1.650 680 (—1)0.813128 | 2.350605 (—2)0.453 001

Table 6.5. Multiply numbers by 10%, where k is given in parenthesis

B_ !

= 2, ), 0<c<oo (6.37)

Gauss Quadrature with Logarithmic Singularity

1 n
/0 SO Inxdx~ =Y Aif(x) (6.38)
i=1
X Aj Xi Aj
n=2 n=>5
0.112 009 0.718539 | (—1)0.291345 0.297 893
0.602277 0.281 461 0.173977 0.349776
n=3 0.411703 0.234 488
(—1)0.638 907 0.513 405 0.677314 (—1)0.989 305
0.368997 0.391980 0.894 771 (—1)0.189116
0.766 880 (—1)0.946 154 n==6
n=4 (—1)0.216 344 0.238764
(—1)0.414 485 0.383 464 0.129583 0.308287
0.245275 0.386 875 0.314 020 0.245317
0.556 165 0.190 435 0.538657 0.142 009
0.848 982 (—1)0.392 255 0.756 916 (—1)0.554 546
0.922 669 (—1)0.101 690

Table 6.6. Multiply numbers by 10%, where k is given in parenthesis

_ k(n)
T (2n)!

where k(2) = 0.00285, k(3) = 0.00017, k(4) = 0.00001.

@ @), 0<c<1 (6.39)
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B gaussNodes

The function gaussNodes computes the nodal abscissas x; and the corresponding
weights A; used in Gauss-Legendre quadrature.'® It can be shown that the approxi-
mate values of the abscissas are

(i —0.25)

X; = COS
n+0.5

Using these approximations as the starting values, the nodal abscissas are com-
puted by finding the nonnegative zeros of the Legendre polynomial p,(x) with
the Newton-Raphson method (the negative zeros are obtained from symmetry).
Note that gaussNodes calls the subfunction 1egendre, which returns p, () and its
derivative.

function [x,A] = gaussNodes(n,tol)

% Computes nodal abscissas x and weights A of
% Gauss-Legendre n-point quadrature.

% USAGE: [x,A] = gaussNodes(n,epsilon,maxIter)

% tol = error tolerance (default is 1.0e4*eps).

if nargin < 2; tol = 1.0ed4*eps; end
A = zeros(n,1l); x = zeros(n,1l);
nRoots = fix(n + 1)/2; % Number of non-neg. roots
for i = 1:30
t = cos(pi*(i - 0.25)/(n + 0.5)); % Approx. roots

for j = i:maxIter
[p,dp] = legendre(t,n); % Newton’s
dt = -p/dp; t = t + dt; % root finding
if abs(dt) < tol % method
x(1) = t; x(n-i+l) = -t;
A(1) = 2/(1-t"2)/dp"2; % Eq. (6.25)
A(n-i+1) = A(L);
break
end
end

end

function [p,dp] = legendre(t,n)

% Evaluates Legendre polynomial p of degree n
% and its derivative dp at x = t.

prO = 1.0; pl = t;

15 This function is an adaptation of a routine in Press, W.H. et al., Numerical Recipes in Fortran 90,
Cambridge University Press, New York, 1996.
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for k = 1:n-1
p = ((2*k + 1)*t*pl - k*p0)/(k + 1); % Eq. (6.19)
p0 = pl;pl = p;

end

dp = n *(p0 - t*pl)/(1 - t°2); % Eq. (6.21)

B gaussQuad

The function gaussQuad evaluates fab f(x) dx with Gauss-Legendre quadrature us-
ing n nodes. The function defining f(x) must be supplied by the user. The nodal ab-
scissas and the weights are obtained by calling gaussNodes.

function I = gaussQuad(func,a,b,n)

% Gauss-Legendre quadrature.

% USAGE: I = gaussQuad(func,a,b,n)

% INPUT:

% func = handle of function to be integrated.

% a,b = integration limits.
% n = order of integration.
% OUTPUT:

% I = integral

cl =( + a)/2; c2 = (b - a)/2; % Mapping constants

[x,A] = gaussNodes(n); % Nodal abscissas & weights
sum = 0;

for i = 1:1length(x)

y = feval(func,cl + c2*x(i)); % Function at node i
sum = sum + A(i)*y;
end

I = c2*sum;

EXAMPLE 6.8
Evaluate /', (1 — x2)¥2dx as accurately as possible with Gaussian integration.

Solution As the integrand is smooth and free of singularities, we could use Gauss—
Legendre quadrature. However, the exact integral can be obtained with the Gauss—
Chebyshev formula. We write

1 1(1— x2)2
1-—x? 3/Zcix:/ (7dx
/4 ( ) -1 /1 —x?
The numerator f(x) = (1 — x?)? is a polynomial of degree four, so that Gauss—
Chebyshev quadrature is exact with three nodes.
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The abscissas of the nodes are obtained from Eq. (6.32). Substituting n = 3, we

get
2i-Dr .
X;=cos——, i=12,3
' 2(3)
Therefore,
T V3
X] =C0S — = —
6 2
Xp = COS r =0
2
5 V3
Xp = COS — = —
6 2

and Eq. (6.31) yields

1 3

[ a-eytar=Ty 0

1
w 3\* ) 3\*| 3n
_3[<1_4) +(1-0) +<1—4)}_8
EXAMPLE 6.9

o . 0.5
Use Gaussian integration to evaluate /[, coswxIn x dx.

Solution We split the integral into two parts:

0.5 1 1
/ cos:rxlnxdx:/ cosnxlnxdx—/ costxInxdx
0

0 05
The first integral on the right-hand side, which contains a logarithmic singularity at
x = 0, can be computed with the special Gaussian quadrature in Eq. (6.38). Choosing
n = 4, we have

4

1
/ cosnxlnxdxz—g A; cosmx;
0 3
i=1

where x; and A; are given in Table 6.7. The sum is evaluated in the following table:

X COS 7T X; A; A; cosmXx;
0.041448 0.991534 0.383464 0.380218
0.245275 0.717525 0.386875 0.277 592
0.556165 —0.175533 0.190435 —0.033428
0.848982 —0.889550 0.039225 —0.034 892

¥ = 0.589490

Thus

1
/ cosmxInxdx ~ —0.589490
0
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The second integral is free of singularities, so that it can be evaluated with Gauss-
Legendre quadrature. Choosing again n = 4, we have

4

1
/ costxlnxdx =~ 0.25 ZAi cosx;In x;
0.5 i=1

where the nodal abscissas are — see Eq. (6.28)

1405 1-05
M= T

Looking up &; and A; in Table 6.3 leads to the following computations:

£; = 0.75 + 0.25¢;

&; X; cos w x; In x; A; A;cosmxIn x;
—0.861136 0.534716 0.068141 0.347855 0.023 703
—0.339981 0.665005 0.202133 0.652145 0.131820

0.339981 0.834995 0.156638 0.652 145 0.102151
0.861136 0.965284 0.035123 0.347855 0.012218
> =0.269892
from which
1
f cosmxInxdx ~ 0.25(0.269 892) = 0.067 473
0.5
Therefore,

1
/ coswtxIlnxdx ~ —0.589490 — 0.067473 = —0.65696 3
0

which is correct to six decimal places.

EXAMPLE 6.10
Evaluate as accurately as possible

*®x+3
0 Vx
Solution In its present form, the integral is not suited to any of the Gaussian quadra-
tures listed in this section. But using the transformation

F = e *dx

x=1t dx =2tdt

the integral becomes

F:2/ (r2+3)e—f2dt=/ 2 +3)e dt
0 —

oo

which can be evaluated exactly with Gauss—-Hermite formula using only two nodes
(n =2). Thus

F=A(ff +3)+ A5 +3)
= 0.886 227 [(0.707 107) + 3] + 0.886 227 [ (—0.707 107)* + 3]
= 6.20359
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EXAMPLE 6.11
Determine how many nodes are required to evaluate

b4 s 2
sin x
i (557)
0 X
with Gauss-Legendre quadrature to six decimal places. The exact integral, rounded
to six places, is 1.418 15.

Solution The integrand is a smooth function; hence, it is suited for Gauss-Legendre
integration. There is an indeterminacy at x = 0, but this does not bother the quadra-
ture since the integrand is never evaluated at that point. We used the following pro-
gram that computes the quadrature with 2, 3, ..., nodes until the desired accuracy is
reached:

% Example 6.11 (Gauss-Legendre quadrature)
func = @(x) ((sin(x)/x)"2);
a=0; b =pi; Iexact = 1.41815;
for n = 2:12
I = gaussQuad(func,a,b,n);
if abs(I - TIexact) < 0.00001
I
n
break
end

end

The program produced the following output:

1.41815026780139

EXAMPLE 6.12
Evaluate numerically f13.5 f(x) dx, where f(x) is represented by the unevenly spaced
data

X 1.2 1.7 2.0 2.4 2.9 3.3
f(x) || —0.36236 | 0.12884 | 0.41615 | 0.73739 | 0.97096 | 0.98748

Knowing that the data points lie on the curve f(x) = — cos x, evaluate the accuracy of
the solution.

Solution We approximate f(x) by the polynomial Ps(x) that intersects all the data
points, and then evaluate fﬁs fx)dx =~ ffs P5(x)dx with Gauss-Legendre formula.
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Since the polynomial is of degree five, only three nodes (n = 3) are required in the
quadrature.
From Eq. (6.28) and Table 6.6, we obtain the abscissas of the nodes

3+15 3-15

X) = 5 + 5 (—0.774597) = 1.6691
3+15

X2 = 2 =2.25
3+15 3-1.5

X3 = > + > (0.774597) = 2.8309

We now compute the values of the interpolant P;(x) at the nodes. This can be done
using the functions newtonPoly or neville listed in Section 3.2. The results are

P5(x;) = 0.098 08 P5(xp) = 0.62816 P5(x3) = 0.95216
Using Gauss-Legendre quadrature

3 3-15¢
I:/I'SPS(x)dx: 5 ;AiPs(xi)

we get

I =0.75[0.555556(0.098 08) + 0.888 889(0.628 16) + 0.555 556(0.952 16)]
= 0.85637

Comparison with — fﬁs cos x dx = 0. 856 38 shows that the discrepancy is within the
roundoff error.

PROBLEM SET 6.2

1. Evaluate

/” In(x)
——————dx
1 X2 —-2x+2
with Gauss-Legendre quadrature. Use (a) two nodes and (b) four nodes.
2. Use Gauss-Laguerre quadrature to evaluate f0°° (1 —x%)3e*dx.
3. Use Gauss-Chebyshev quadrature with six nodes to evaluate
T2 dx

0 +/sinx

Compare the result with the “exact” value 2.62206. Hint: Substitute sin x = 2.
4. Theintegral [ sin x dx is evaluated with Gauss-Legendre quadrature using four

nodes. What are the bounds on the truncation error resulting from the quadra-
ture?
5. How many nodes are required in Gauss-Laguerre quadrature to evaluate

Jo~ e *sin x dx to six decimal places?
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6.

10.

11.

12.

13.

Evaluate as accurately as possible

T o2x+1
——dx
o Vx(1—x)
Hint: Substitute x = (1 + £)/2.
Compute [, sin xIn x dx to four decimal places.
Calculate the bounds on the truncation error if [; xsin x dx is evaluated with
Gauss-Legendre quadrature using three nodes. What is the actual error?
Evaluate f02 (sinh x/x ) dx to four decimal places.
B Evaluate the integral
® xdx
/(; e*+1

by Gauss-Legendre quadrature to six decimal places. Hint: Substitute e* =
In(1/8).

B The equation of an ellipse is x?/a® + y?/b?* = 1. Write a program that computes
the length

S= Zf V1+(dy/dx)?dx

of the circumference to four decimal places for given a and b. Test the program
witha =2and b = 1.
B The error function, which is of importance in statistics, is defined as

2 T e
erf(x) = ﬁ/ e ldt
0

Write a program that uses Gauss-Legendre quadrature to evaluate erf(x) for a
given x to six decimal places. Note that erf(x) = 1.000 000 (correct to six decimal
places) when x > 5. Test the program by verifying that erf(1.0) = 0.842 701.

|

The sliding weight of mass m is attached to a spring of stiffness k that has an
undeformed length L. When the mass is released from rest at B, the time it takes
to reach A can be shown to be t = C,/m/ k, where

C= /01 [(ﬁ - 1)2 -(Vi+2 - 1)2]1/2 dz
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Compute C to six decimal places. Hint: The integrand has singularity at z=1
that behaves as (1 — z%)~1/2,
14. 1

A uniform beam forms the semiparabolic cantilever arch A B. The vertical dis-
placement of A due to the force P can be shown to be

pb? h
ba=FrC (z)

where ET is the bending rigidity of the beam and

o(3)- [ e (B

Write a program that computes C(h/b) for any given value of //b to four decimal
places. Use the program to compute C(0.5), C(1.0), and C(2.0).

15. W There is no elegant way to compute I = fO”/ ®In(sin x) dx. A “brute force”
method that works is to split the integral into several parts: from x = 0 to 0.01,
from 0.01 t0 0.2, and from x = 0.02 to r /2. In the first part, we can use the approx-
imation sin x &~ x, which allows us to obtain the integral analytically. The other
two parts can be evaluated with Gauss-Legendre quadrature. Use this method to
evaluate I to six decimal places.

16. &

h (m)
112

80

620

52
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Pressure of wind was measured at various heights on a vertical wall, as shown on
the diagram. Find the height of the pressure center, which is defined as

_ [y hpthydh
j-0112mp(h) dh

Hint: Fit a cubic polynomial to the data and then apply Gauss-Legendre quadra-

ture.
17. M Write a function that computes |’ ; " y(x) dx from a given set of data points of
the form
X1 X2 X3 ce Xn
i | Ve | Vs | | Vn

The function must work for unevenly spaced x-values. Test the function with the
data given in Problem 17, Problem Set 6.1. Hint: Fit a cubic spline to the data
points and apply Gauss-Legendre quadrature to each segment of the spline.

Multiple Integrals

Multiple integrals, such as the area integral | [, f(x, y) dx dy, can also be evaluated
by quadrature. The computations are straightforward if the region of integration has
a simple geometric shape, such as a triangle or a quadrilateral. Due to complica-
tions in specifying the limits of integration on x and y, quadrature is not a practi-
cal means of evaluating integrals over irregular regions. However, an irregular region
A can always be approximated as an assembly triangular or quadrilateral subregions
A1, Ay, ..., called finite elements, as illustrated in Fig. 6.6. The integral over A can then
be evaluated by summing the integrals over the finite elements:

//f(x,y)dxdy%Z// flx, ) dxdy
A i Ai

Volume integrals can be computed in a similar manner, using tetrahedra or rectan-
gular prisms for the finite elements.

Bounday of region A

Figure 6.6. Finite element model of an irregular region.



www.MatlabKar.com e b (3l At - e 35901 - IS e ol

Numerical Integration

nl
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Figure 6.7. Mapping a quadrilateral into the standard rectangle.

Gauss-Legendre Quadrature over a Quadrilateral Element

Consider the double integral

1 1
I=/ / &, n) d de
1/

over the rectangular element shown in Fig. 6.7(a). Evaluating each integral in turn by
Gauss-Legendre quadrature using n nodes in each coordinate direction, we obtain

1 n n n
I= f 1 D TAifE, mdn=) A, [ZAif(si, m)}
=1 j=1 i=1

or

=) D AAfEnny (6.40)

i=1 j=1

The number of integration points 7 in each coordinate direction is called the integra-
tion order. Figure 6.7(a) shows the locations of the integration points used in third-
order integration (n = 3). Because the integration limits were the “standard” limits
(=1, 1) of Gauss-Legendre quadrature, the weights and the coordinates of the inte-
gration points are as listed in Table 6.3.

In order to apply quadrature to the quadrilateral element in Fig. 6.7(b), we must
first map the quadrilateral into the “standard” rectangle in Fig. 6.7(a). By mapping
we mean a coordinate transformation x = x(&, n), y = y(&, n) that results in one-
to-one correspondence between points in the quadrilateral and in the rectangle. The
transformation that does the job is

4 4
xEm=Y NEmxe  y&En =) Nel&nyx (6.41)

k=1 k=1
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where (xi, yi) are the coordinates of corner k of the quadrilateral and

1
ME ) = Z(l -&1-n)

1
No(§,m) = Z(H—%‘)(l—n) (6.42)

1
N3 (&, n) = Z(l-l-é)(l-l-n)

1
Ny(§,m) = 1(1 &1 +n)

The functions N (€, n), known as the shape functions, are bilinear (linear in each co-
ordinate). Consequently, straight lines remain straight upon mapping. In particular,
note that the sides of the quadrilateral are mapped into the lines ¢ = +1 and n = +1.

Because mapping distorts areas, an infinitesimal area element dA = dx dy of the
quadrilateral is not equal to its counterpart d¢ dn of the rectangle. It can be shown
that the relationship between the areas is

dxdy=1J&, n)| dé dn (6.43)
where
ax oy
Jem =155 o (6.442)
o o

is the known as the Jacobian matrix of the mapping. Substituting from Eqgs. (6.41) and
(6.42) and differentiating, the components of the Jacobian matrix are

1
Ju=-[-A-mx+0A—-nx+ A+ nxs— 1+ n)xs]

4
1

Jo= g =0 =my+ A =ny2+ 0+ mys — A+ 0yl (6.44b)
1

Joa= =1 =80 = Q4860+ (148X + (1 - §)x]
1

Joz = 7= =8y = A+ 8y + 1L+ 8y + (1 =)yl

We can now write

1 1
/ / fx, y)dxdy = / / FlxE n), y& ] JE mldedy  (6.45)
A —-1J-1

Since the right-hand-side integral is taken over the “standard” rectangle, it can be
evaluated using Eq. (6.40). Replacing f(£, n) in Eq. (6.40) by the integrand in Eq. (6.45),
we get the following formula for Gauss-Legendre quadrature over a quadrilateral
region:

I=Y">"AA; f[xE;n), yEnn)] |TEnn)l (6.46)

i=1 j=1
The & and n-coordinates of the integration points and the weights can again be ob-
tained from Table 6.3.
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B gaussQuad?2

The function gaussQuad2 computes [ [, f(x, y) dx dy over a quadrilateral element
with Gauss-Legendre quadrature of integration order n. The quadrilateral is defined
by the arrays x and y, which contain the coordinates of the four corners ordered in
a counterclockwise direction around the element. The determinant of the Jacobian

matrix is obtained by calling detJ; mapping is performed by map. The weights and

the values of & and 5 at the integration points are computed by gaussNodes listed in
the previous section (note that & and n appear as s and t in listing).

function I = gaussQuad2(func,x,y,n)

% Gauss-Legendre quadrature over a quadrilateral.

% USAGE
% INPUT
% func
% X

%y

% n

% OUTPU
% I

[t,A] =
for i =

for

end

end

I = gaussQuad2(func,x,y,n)

handle of function to be integrated.
[x1;x2;x3;x4] = xX-coordinates of corners.
[vl;yv2;v3;y4] = y-coordinates of corners.

order of integration

T:

integral

gaussNodes(n); I = 0;

1:n

j=1:n

[xNode,yNode] = map(x,y,t(i),t(j));
z = feval(func,xNode,yNode);

detJ = jac(x,y,t(i),t(j));

I =1+ A(1L)*A(J)*detT*z;

function detJ = jac(x,y,s,t)

% Computes determinant of Jacobian matrix.

J = zeros(2);

J(1,1)

J(1,2)

J(2,1)

J(2,2)

detJ =

(

- (1 - ©)*x(1) + (1 - t©)*x(2)...
+ (1 + t)*x(3) - (1 + t)*x(4);
- (1 - B)*y(1) + (1 - t)*y(2)...
+ (1 + £)*y(3) - (1 + t)*y(4);
- (1 - s)*x(1) - (1 s)*x(2). ..
+ (1 + s)*x(3) + (1 - s)*x(4);
- (1 - s)*y(1) - (1 + s)*y(2)...
+ (1 + s)*y(3) + (1 - s)*y(4);
J(1,1)*3(2,2) - J3(1,2)*3(2,1))/16;
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function [xNode,yNode] = map(x,y,s,t)

% Computes x and y-coordinates of nodes.
N = zeros(4,1);

N(1) = (1 - s)*(1 - t)/4;

N(2) = (1 + s)*(1 - t)/4;

N(3) = (1 + s)*(1 + t)/4;

N(4) = (1 - s)*(1 + t)/4;

xNode = dot(N,x); yNode = dot(N,y);

EXAMPLE 6.13

@ 2 @

Evaluate the integral

I://A(x2+y)dxdy

over the quadrilateral shown.
Solution The corner coordinates of the quadrilateral are
xT:[OZZO] yT:[OOBZ]

The mapping is

4
X&) =Y N, m)xx

k=1
0+ (1+80—n) @+ I+80+n) 2 +0
4 4
=1+¢

4
yE M =Y N, My
k=1
1+&80A+n (1-801+n)

=0+O+f(3)+T(2)

_6+80+n
o 4
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which yields for the Jacobian matrix

dx dy Lt
_| 9 09§ | _ 4
an an 4
Thus the area scale factor is
54+
[J(E, = Tg

Now we can map the integral from the quadrilateral to the standard rectangle. Refer-
ring to Eq. (6.45), we obtain

1_// <1+$> G+aU+m|5+¢ .,
4 4 n
Lrtris 21 1, 25
:[1ﬁ1(§+T65+§S *5 +357" 5 $n+—5 n)dgdn

Noting that only even powers of £ and 5 contribute to the integral, the integral sim-

plifies to
L el /15 1 49
1= g ==
f,I/,l<8+25>déd” 6

EXAMPLE 6.14
Evaluate the integral

/ / cos—cos—dxdy

by Gauss-Legendre quadrature of order three.

Solution From the quadrature formula in Eq. (6.40), we have

3
=" A4 ”zyf

i=1 j=1

L x

-1 0 1
The integration points are shown in the figure; their coordinates and the correspond-
ing weights are listed in Table 6.3. Note that the integrand, the integration points, and
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the weights are all symmetric about the coordinate axes. It follows that the points
labeled a contribute equal amounts to I; the same is true for the points labeled b.
Therefore,

, 7(0.774597)

I = 4(0.555 556)? cos 5

+4(0.555556)(0.888 889) cos

7(0.774597) (0)
cos
2 2
0
+(0.888889)? cos? ?
= 1.623391
The exact value of the integral is 16/72 =~ 1.621 139.

EXAMPLE 6.15

L] @
= i

Utilize gaussQuad?2 to evaluate I = f f ' f(x, y) dx dy over the quadrilateral shown,
where

[, y) = (x = 2)*(y — 2)?
Use enough integration points for “exact” answer.

Solution The required integration order is determined by the integrand in Eq. (6.45):

1 1
IZ/ / flx@&, m), y& ml |, n)ldédn (a)
-1J-1

We note that | J (£, n)|, defined in Egs. (6.44), is biquadratic. Since the specified f(x, y)
is also biquadratic, the integrand in Eq. (a) is a polynomial of degree four in both &
and 5. Thus third-order integration (n = 3) is sufficient for an “exact” result. Here is
the MATLAB program that performs the integration:

% Example 6.15 (Gauss quadrature in 2D)
func = @(x,y) (((x - 2)*(y - 2))72);
I = gaussQuad2(func,[0;4;4;1]1,[0;1;4;3],3)
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The result is

I =
11.3778

Quadrature over a Triangular Element

@

Figure 6.8. Quadrilateral with two coincident corners.

)
@

A triangle may be viewed as a degenerate quadrilateral with two of its corners
occupying the same location, as illustrated in Fig. 6.8. Therefore, the integration for-
mulas over a quadrilateral region can also be used for a triangular element. However,
it is computationally advantageous to use integration formulas specially developed
for triangles, which we present without derivation.'®

Figure 6.9. Triangular element.

Consider the triangular element in Fig. 6.9. Drawing straight lines from the point
P in the triangle to each of the corners we divide the triangle into three parts with
areas A;, A,, and As. The so-called area coordinates of P are defined as

o = K i=1,2,3 (6.47)
where A is the area of the element. Since A; + A, + A3 = A, the area coordinates are
related by

a1 +ar+az=1 (6.48)

Note that «; ranges from 0 (when P lies on the side opposite to corneri) to 1 (when P
is at corner i).

16 The triangle formulas are extensively used in the finite method analysis. See, for example,
Zienkiewicz, O.C., and Taylor, R.L., The Finite Element Method, Vol. 1, 4th ed., McGraw-Hill, New
York, 1989.
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A convenient formula of computing A from the corner coordinates (x;, ;) is

1 1 1 1
A= E X1 X2 X3 (6.49)
i Y2 )3

The area coordinates are mapped into the Cartesian coordinates by
3 3
Xx(oty, a2, a3) = Zaixi Yoy, oz, a3) = Z%‘Yi (6.50)
i=1 i=1

The integration formula over the element is
[ [ rix. i aa =4y wisixen, v 6.51)
A k

where a represents the area coordinates of the integration point k, and W; are the
weights. The locations of the integration points are shown in Fig. 6.10, and the corre-
sponding values of &y and W are listed in Table 6.7. The quadrature in Eq. (6.51) is
exact if f(x, y) is a polynomial of the degree indicated.

LN

(a) Linear (b) Quadratic

Figure 6.10. Integration points of triangular elements.

’ Degree of f(x, y) ‘ Point ‘ o ‘ Wi ‘

(a) Linear a 1/3, 1/3, 1/3 1

(b) Quadratic a 1/2,0, 1/2 1/3
b 1/2,1/2, 0 1/3
c 0,1/2, 1/2 1/3

(c) Cubic a 1/3, 1/3, 1/3 | —27/48
b | 1/5 1/5 3/5 | 25/48
¢ |3/5.1/5,1/5 | 25/48
d |1/53/5,1/5| 25/48

Table 6.7

B triangleQuad

The function triangleQuad computes | [, f(x, y) dx dy over a triangular region us-
ing the cubic formula - case (c) in Fig. 6.10. The triangle is defined by its corner co-
ordinate arrays x and y, where the coordinates must be listed in a counterclockwise
direction around the triangle.
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function I =

%
%
%
%
%
%
%
%

alpha =

w

xNode =

A

sum

for i =

e b sl et - i el - IS e ol

triangleQuad(func,x,y)

Cubic quadrature over a triangle.

USAGE: I =
INPUT:
func = handle of function to be
X = [x1;x2;x3] x-coordinates
y
OUTPUT:

T =

[vyl;y2;y3] y-coordinates

integral

[1/3 1/3 1/3;
3/5 1/5 1/5;
= [-27/48; 25/48; 25/48;
alpha*x; yNode =
= (x(2)*y(3) x(3)*y(2)...
- x()*y(3) + x(3)*y(l)...
+ x(1)*y(2) x(2)*y(1))/2;
=0;

alpha*y;

1:4

z

sum = sum + W(i)*z;

end

= A¥*sum

EXAMPLE 6.16

1/5 1/5 3/5;
1/5 3/5 1/51;
25/481;

triangleQuad(func,x,y)

integrated.
of corners.

of corners.

feval (func,xNode(i),yNode(i));

@

Evaluate I = [ [, f(x, y) dx dy over the equilateral triangle shown, where'’

_l 2 2_1 3 2_%
f(x,y)—z(x +¥9) 6(x 3xy°) 3

Use the quadrature formulas for (1) a quadrilateral and (2) a triangle.

17 This function is identical to the Prandtl stress function for torsion of a bar with the cross section
shown; the integral is related to the torsional stiffness of the bar. See, for example, Timoshenko,
S.P, and Goodier, J.N., Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970.



www.MatlabKar.com e b (5l At - e 5901 - IS e ol

*6.5 Multiple Integrals

Solution of Part (1) Let the triangle be formed by collapsing corners 3 and 4 of a
quadrilateral. The corner coordinates of this quadrilateral are x = [-1, —1, 2, 2]T

andy = [\ﬁ, —4/3,0, O] T. To determine the minimum required integration order
for an exact result, we must examine f [x(§, n), y(&, n)] |J (&, n)|, the integrand in Eqgs.
(6.44). Since | J (¢, n)| is biquadratic, and f(x, y) is cubicin x, the integrand is a polyno-
mial of degree five in x. Therefore, third-order integration will suffice. The command
used for the computations is

>> I = gaussQuad2(@fex6_16,[-1;-1;2;2],...
[sart(3);-sqrt(3);0;01],3)
I =
-1.5588

The function that returns z = f(x, y) is

function z = fex6_16(x,y)
% Function used in Example 6.16
z = (x"2 +y"2)/2 - (x"3 - 3*x*y"2)/6 - 2/3;

Solution of Part (2) The following command executes quadrature over the triangular
element:

>> I = triangleQuad(@fex6_16,[-1; -1; 2],[sqrt(3);-sqrt(3); 0])
I =
-1.5588

Since the integrand is a cubic, the result is also exact.
Note that only four function evaluations were required when using the triangle
formulas. In contrast, the function had to be evaluated at nine points in Part (1).

EXAMPLE 6.17
The corner coordinates of a triangle are (0, 0), (16,10), and (12, 20). Compute
[ [, (x* — y*) dx dy over this triangle.

Solution
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Because f(x, y) is quadratic, quadrature over the three integration points shown
in Fig. 6.10(b) will be sufficient for an “exact” result. Noting that the integration points
lie in the middle of each side, their coordinates are (6, 10), (8, 5), and (14, 15). The area
of the triangle is obtained from Eq. (6.49):

1 1 1 1 1 1 1 1
A= 3 X1 Xp X3|= > 0 16 12| =100
J/1 yg y3 0 10 20

From Eq. (6.51) we get

I=AY Wif(x, yi)

k=a
=100 1 (6, 10) 1 (8,5) 1 (14 15)i|
- |:§f » + gf il + gf il

100

5 [(6% — 10%) + (8% — 5) + (14% — 15%)] = 1800

PROBLEM SET 6.3

1. Use Gauss-Legendre quadrature to compute

1 1
/ f (1-x1 -y dxdy
-1J-1

2. Evaluate the following integral with Gauss-Legendre quadrature

2 3
/ / x*y* dx dy
=0 Jx=0

3. Compute the approximate value of

1 1 I
/ / e ) gy dy
-1J-1

with Gauss-Legendre quadrature. Use integration order (a) two and (b) three.
(The true value of the integral is 2.230985.)
4. Use third-order Gauss-Legendre quadrature to obtain an approximate value of

1 pl _
/ / costxdy
—1J-1 2

(The exact value of the integral is 1.621 139.)
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5.
y 4
4 /
5 X
Map the integral [ [, xy dx dy from the quadrilateral region shown to the “stan-
dard” rectangle and then evaluate it analytically.
6.
y 4
\
\
'4
\
\
\
2 3 X
Compute [ [, xdxdy over the quadrilateral region shown by first mapping it
into the “standard” rectangle and then integrating analytically.
7.

Y

4
3 X
2

Use quadrature to compute | [, x* dx dy over the triangle shown.
8. Evaluate [ [, x* dx dy over the triangle shown in Problem 7.
9.

Yy

4\
3 X

Use quadrature to evaluate [ [, (3 — x)y dx dy over the region shown. Treat the
region as (a) a triangular element and (b) a degenerate quadrilateral.
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10. Evaluate | [, x*y dx dy over the triangle shown in Problem 9.
11. m

Evaluate [ [, xy(2 — x?)(2 — xy) dx dy over the region shown.

12. m Compute [ [, xy exp(—x?) dx dy over the region shown in Problem 11 to four
decimal places.

13. 1

1 X

Evaluate | [, (1 — x)(y — x)y dx dy over the triangle shown.

14. W Estimate [ [, sinzx dx dy over the region shown in Problem 13. Use the cubic
integration formula for a triangle. (The exact integral is 1/x.)

15. B Compute [ [, sinwxsinz(y — x) dx dy to six decimal places, where A is the
triangular region shown in Problem 13. Consider the triangle as a degenerate
quadrilateral.

16. m

— X

Write a program to evaluate [ [, f(x, y) dx dy over an irregular region that has
been divided into several triangular elements. Use the program to compute
J [, xy(y — x) dx dy over the region shown.
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MATLAB Functions

I = quad(func,a,b,tol) uses adaptive Simpson’s rule for evaluating I =
fab f(x) dx with an error tolerance tol (default is 1.0e-6). To speed up execu-
tion, vectorize the computation of func by using array operators .*, ./ and .” in
the definition of func. For example, if f(x) = x° sin x 4+ 1/x, specify the func-
tion as

function y = func(x)
y = (x.73).*sin(x) + 1./x

I = dblgquad(func,xMin,xMax,yMin,yMax,tol) uses quad to integrate over a

yMax pxMax
I= / / fx, yydxdy
y

Min xMin

rectangle:

I = quadl(func,a,b,tol) employs adaptive Lobatto quadrature (this fairly ob-
scure method is not discussed in this book). It is recommended if very high
accuracy is desired and the integrand is smooth.

There are no functions for Gaussian quadrature.
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Solvey’ = F(x,y), y@) = «

Introduction

The general form of a first-order differential equation is

Y =flx, (7.1a)

where ¥y’ = dy/dx and f(x, y) is a given function. The solution of this equation con-
tains an arbitrary constant (the constant of integration). To find this constant, we
must know a point on the solution curve; that is, y must be specified at some value of
X, say, at x = a. We write this auxiliary condition as

An ordinary differential equation of order n
vy =fpy, .. y"Y) (7.2)
can always be transformed into 7 first-order equations. Using the notation
_ _ ’ _ " _ (n—1)
n=y Jy2=y »=y" ... Y=Yy (7.3)

the equivalent first-order equations are

J/

Nn=y2 =y ¥B=¥s - Ya=fy ¥ ) (7.4a)

The solution now requires the knowledge of n auxiliary conditions. If these condi-
tions are specified at the same value of x, the problem is said to be an initial value
problem. Then the auxiliary conditions, called initial conditions, have the form

n@ = yo(a) = ay wn@=as ... yua) =a, (7.4b)

If y; are specified at different values of x, the problem is called a boundary value
problem.
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7.2 Taylor Series Method

For example,
YVi=-y y0O=1 y0)=0

is an initial value problem since both auxiliary conditions imposed on the solution
are given at x = 0. On the other hand,

YV'==y y0O=1 y@)=0
is a boundary value problem because the two conditions are specified at different
values of x.

In this chapter, we consider only initial value problems. The more difficult
boundary value problems are discussed in the next chapter. We also make extensive
use of vector notation, which allows us to manipulate sets of first-order equations in
a concise form. For example, Egs. (7.4) are written as

y=Fxy vya=«a (7.5a)
where
)2
V3
n
fx,y)

A numerical solution of differential equations is essentially a table of x- and y-values
listed at discrete intervals of x.

Taylor Series Method

The Taylor series method is conceptually simple and capable of high accuracy. Its
basis is the truncated Taylor series for y about x:

1 1 1
Y+ 1)~y +y O+ 2y R + oy @ 4+ 4+ —yP @R (76)

Because Eq. (7.6) predicts y at x + h from the information available at x, it is also a
formula for numerical integration. The last term kept in the series determines the
order of integration. For the series in Eq. (7.6) the integration order is m.

The truncation error, due to the terms omitted from the series, is

— = ylmt+D m+1
E_(m+1)!y W™, x<&<x+h

Using the finite difference approximation

y(m) (x+ h) — y(m) (x)
h

yE) ~
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we obtain the more usable form

E~ (m) h) — yim 7.7
(m+Dﬂy (x+h) —y"™ @] (7.7)

which could be incorporated in the algorithm to monitor the error in each integration
step.
W taylor
The function taylor implements the Taylor series method of integration order four.
It can handle any number of first-order differential equations y; = fi(x, y1, ¥2, ..., ¥n),
i=1,2,..., n The user is required to supply the function deriv that returns the
4 x n array

)’ i Yao o W

(VORI I I VAR 4

(y///) T y{// yZW yr/l//

)" now o

The function returns the arrays xSol and ySol that contain the values of x and y
atintervals h.

function [xSol,ySol] = taylor(deriv,x,y,xXStop,h)
% 4th-order Taylor series method of integration.
% USAGE: [xSol,ySol] = taylor(deriv,x,y,xStop,h)

% INPUT:

% deriv = handle of function that returns the matrix
% d = [dy/dx d"2y/dx"2 d"3y/dx"3 d"4y/dx"4].
% X,y = initial values; y must be a row vector.

% xStop = terminal value of x

% h = increment of x used in integration (h > 0).
% OUTPUT:

% xSol = x-values at which solution is computed.

% ySol = values of y corresponding to the x-values.

if size(y,1) > 1; vy =y’; end % y must be row vector
xSol = zeros(2,1); ySol = zeros(2,length(y));
xS0l(1l) = x; ySol(l,:) = v;
k = 1;
while x < xStop
h = minCh,xStop - x);

d = feval(deriv,x,y); % Derivatives of [y]
hh = 1;
for j = 1:4 % Build Taylor series

hh = hh*h/j; % hh = h"j/j!
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y =y + d(J,:)*hh;
end
x =x+ h; k =k + 1;
xSol(k) = x; ySol(k,:) = vy; % Store current soln.

end

B printSol

This function prints the results xSol and ySol in tabular form. The amount of data
is controlled by the printout frequency freg. For example, if freq = 5, every fifth
integration step would be displayed. If freq = 0, only the initial and final values
will be shown.

function printSol(xSol,ySol, freq)

% Prints xSol and ySoln arrays in tabular format.
% USAGE: printSol(xSol,ySol, freq)

% freq = printout frequency (prints every freg-th
% line of xSol and ySol).

[m,n] = size(ySol);

if freq == 0;freq = m; end
head =’ x’;
for i = 1:n
head = strcat(head,’ vy’ ,num2str(i));
end

fprintfcChead); fprintf(’\n’)
for i = 1:freq:m
fprintf(’%14.4e’ ,xSo0l(i),ySol(i,:)); fprintf(’\n’)
end
if i "= m; fprintf(’%1l4.4e’,xSol(m),ySol(m,:)); end

EXAMPLE 7.1
Given that

y +4y=x> y0)=1

determine y(0.2) with the fourth-order Taylor series method using a single integra-
tion step. Also compute the estimated error from Eq. (7.7) and compare it with the
actual error. The analytical solution of the differential equation is

1, 1 1

31
=—e"+-_x*—-x+—

V=132 2t T8t T3
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Solution The Taylor series up to and including the term with h* is
y(h) = y0) + y' 0 h+ %y”(m W+ %y”’(O) 1w+ %y“) O)h @
Differentiation of the differential equation yields
y = —4y+ x?
y" = —4y' +2x =16y — 4x* + 2x
7"

=16y —8x+2=—64y +16x*> — 8x+2

(4)

y —64y’ +32x — 8 = 256y — 64x% +32x — 8

Thus
y'(0) = —4(1) = —4
y"(0) = 16(1) = 16
y"(0) = —64(1) 4+ 2 = —62
y@(0) = 256(1) — 8 = 248

With h = 0.2, Eq. (a) becomes

1 1 1
y(0.2) =14 (-4)(0.2) + 5(16)(0.2)2 + 5(—62)(0.2)3 + 51 (248) (0.2)*

= 0.4539

According to Eq. (7.7) the approximate truncation error is
L @)
E= I [y*0.2) — y? (0]

where
y@(0) = 248
y#(0.2) = 256(0.4539) — 64(0.2)* 4 32(0.2) — 8 = 112.04

Therefore,

0.2)*
5!

E = (112.04 — 248) = —0.0018

The analytical solution yields

31 1 1 1
0.2) = —¢402 4 Z(0.2)2 - 2(0.2) + — = 0.4515
y(0.2) 32¢ +4( ) 8( )+32

so that the actual error is 0.4515 — 0.4539 = —0.0024.

EXAMPLE 7.2
Solve
y'=-01y'-x y0=0 y0=1

from x = 0 to 2 with the Taylor series method of order four using h = 0.25.
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Solution With y; = yand y» = y’ the equivalent first-order equations and initial con-

ditions are
/ yi )2 0
= = 0 =
Y {yé} [—Olyz—x} yo L}

Repeated differentiation of the differential equations yields

y// — yé — _0‘1y2 - X
—0.1y; — 1 0.01y» +0.1x — 1
w | 01y, =1 | 0.01y»+0.1x -1
vo= 0.01y, +0.1 | | —0.001y, — 0.01x + 0.1

@w _ | 00ly,+01 | | —0.001y, —0.01x+0.1
~ | —0.001y, —0.01 | | 0.0001y, +0.001x — 0.01

Thus the derivative array required by taylor is

V2 0.1y, — x
B —0.1y, — x 0.01y, +0.1x -1
0.01y, +0.1x -1 —0.001y, — 0.01x+ 0.1

—0.001y, — 0.01x+ 0.1 0.0001y, + 0.001x — 0.01

which is computed by

function d = fex7_2(x,vy)

% Derivatives used in Example 7.2

d = zeros(4,2);

a(l,1) = y(2);

d(1,2) = -0.1*y(2) - x;

d(2,1) = d(1,2);

d(2,2) = 0.01*y(2) + 0.1*x -1;
d(3,1) = d(2,2);

d(3,2) = -0.001*%y(2) - 0.01*x + 0.1;
d(4,1) = d(3,2);
d(4,2) = 0.0001*y(2) + 0.001*x - 0.01;

Here is the solution:

>> [x,y] = taylor(@fex7_2, 0, [0 1], 2, 0.25);
>> printSol(x,y,1)
X vl y2
0.0000e+000 0.0000e+000 1.0000e+000
2.5000e-001 2.4431e-001 9.4432e-001



www.MatlabKar.com e b (3l 4t - e 35901 - IS e ol

Initial Value Problems

5.0000e-001 4.6713e-001 8.2829e-001
7.5000e-001 6.5355e-001 6.5339e-001
1.0000e+000 7.8904e-001 4.2110e-001
1.2500e+000 8.5943e-001 1.3281e-001
1.5000e+000 8.5090e-001 -2.1009e-001
1.7500e+000 7.4995e-001 -6.0625e-001
2.0000e+000 5.4345e-001 -1.0543e+000

The analytical solution of the problem is
y = 100x — 5x* + 990(e™*'* — 1)

from which we obtain y(2) = 0.543 45 and y’(2) = —1.0543, which agree with the nu-
merical solution.

The main drawback of Taylor series method is that it requires repeated differenti-
ation of the dependent variables. These expressions may become very long and thus
error-prone and tedious to compute. Moreover, there is the extra work of coding each
of the derivatives.

Runge-Kutta Methods

The aim of Runge—Kutta methods is to eliminate the need for repeated differenti-
ation of the differential equations. Since no such differentiation is involved in the
first-order Taylor series integration formula

yx+ h) =yx) +y x)h=yx) +Fx, y)h (7.8)

it can be considered as the first-order Runge-Kutta method; it is also called Eu-
ler’s method. Due to excessive truncation error, this method is rarely used in
practice.

Let us now take a look at the graphical interpretation of Euler’s equation. For
the sake of simplicity, we assume that there is a single-dependent variable y, so that
the differential equation is y’ = f(x, y). The change in the solution y between x and
x+ his

x+h

yx+h —yh) = /

X

x+h
y dx = / flx, yydx
X

which is the area of the panel under the y’(x) plot, shown in Fig. 7.1. Euler’s formula
approximates this area by the area of the cross-hatched rectangle. The area between
the rectangle and the plot represents the truncation error. Clearly, the truncation
error is proportional to the slope of the plot; that is, proportional to y” (x).
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y'(x)
- Error
Figure 7.1. Graphical representation
of Euler formula.
Euler's formula
f(xy)
X
X x+h

Second-Order Runge-Kutta Method

To arrive at the second-order method, we assume an integration formula of the form

y(x + h) = y(x) + cF(x, Yh+ ciF [x + ph,y+ qhF(x,y)| h (a)
and attempt to find the parameters ¢, ¢;, p, and g by matching Eq. (a) to the Taylor
series

1
yx+h =yx) +yx)h+ Ey”(x)h2 + O
1
=yx) +Flx,y)h+ EF/(X, VW + 0 (b)
Noting that
! dF dF , 9F < 9F
Fny) =50+ Wy aJrZa—yiFl(x,y)

i=1

where n is the number of first-order equations, Eq.(b) can be written as
1 3
y(x+h)—y(X)+F(x,y)h+2<3x+2 F(x,y))h2+(9(h) (©)

Returning to Eq. (a), we can rewrite the last term by applying Taylor series in
several variables:

dF ~. 9F ,
F[x+ phy+qhF(x,y)] = F(x,y) + o Pht qhg a—yiFl(x, y) + O(1?)
so that Eq. (a) becomes
dF ", 9F 5
Y+ h) =y) + (¢ + ) Fx, Yh+ o | —ph+qh)  —Fxy) | h+O00) @
0x = Y

Comparing Egs. (c) and (d), we find that they are identical if

1 1
+c=1 clp=§ clq=§ (e)

Because Egs. (e) represent three equations in four unknown parameters, we can as-
sign any value to one of the parameters. Some of the popular choices and the names
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associated with the resulting formulas are:

=0 =1 p=1/2 ¢g=1/2 Modified Euler’s method
w=1/2 =12 p=1 qg=1 Heun’s method
c=1/3 ca=2/3 p=3/4 q=3/4 Ralston’smethod

All these formulas are classified as second-order Runge-Kutta methods, with no for-

mula having a numerical superiority over the others. Choosing the modified Euler’s
method, substitution of the corresponding parameters into Eq. (a) yields

h h
yx+h) =y(x)+F[x+ > ¥+ 5Ex y)} h ®
This integration formula can be conveniently evaluated by the following sequence of
operations
K, = hF(x,y)
h 1

yx+ h) =yx) + K,

Second-order methods are seldom used in computer application. Most program-
mers prefer integration formulas of order four, which achieve a given accuracy with
less computational effort.

y'(x)

W hl /h/z/ f(x+h/2,y +K,/2)

f (Ty ) // )

X X+h

Figure 7.2. Graphical representation of modified Euler formula.

Figure 7.2 displays the graphical interpretation of modified Euler’s formula for
a single differential equation y’ = f(x, y). The first of Egs. (7.9) yields an estimate of
y at the midpoint of the panel by Euler’s formula: y(x + h/2) = y(x) + f(x, y)h/2 =
y(x) + K1/2. The second equation then approximates the area of the panel by the
area K of the cross-hatched rectangle. The error here is proportional to the curvature
y”" of the plot.

Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method is obtained from the Taylor series along the
same lines as the second-order method. Since the derivation is rather long and not
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very instructive, we skip it. The final form of the integration formula again depends
on the choice of the parameters; that is, there is no unique Runge-Kutta fourth-
order formula. The most popular version, which is known simply as the Runge-Kutta
method, entails the following sequence of operations:

K; = hF(x,y)
h K
nghF(x-f-E,y-i‘ 71>
K; = hF (x+§,y+ %) (7.10)

K, = hF(x+ h y+K3)
1
yx+h =ykx) + E(Kl +2K; + 2Kz + Ky)

The main drawback of this method is that is does not lend itself to an estimate of
the truncation error. Therefore, we must guess the integration step size A, or deter-
mine it by trial and error. In contrast, the so-called adaptive methods can evaluate the
truncation error in each integration step and adjust the value of h accordingly (but at
a higher cost of computation). One such adaptive method is introduced in the next
section.

B runKut4

The function runkut4 implements the Runge-Kutta method of order four. The user
must provide runkKut4 with the function dEgs that defines the first-order differential
equationsy’ = F(x, y).

function [xSol,ySol] = runKut4(dEgs,x,y,xStop,h)
% 4th-order Runge--Kutta integration.
% USAGE: [xSol,ySol] = runKut4(dEgs,x,y,xStop,h)

% INPUT:

% dEgqs = handle of function that specifies the
% 1st-order differential equations

% F(x,y) = [dyl/dx dy2/dx dy2/dx ...].
% X,V = initial values; y must be row vector.

% xStop = terminal value of x.

% h = increment of x used in integration.

% OUTPUT:

% xSol = x-values at which solution is computed.

% ySol = values of y corresponding to the x-values.

if size(y,1) > 1 ; y =vy’; end % y must be row vector
xSol = zeros(2,1); ySol = zeros(2,length(y));

xS0l1l(1l) = x; ySol(l,:) = vy;
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i =

1;

while x < xStop

end

i=1i+ 1;

h = min(h,xStop - x);

K1 h*feval (dEgs,x,V);

K2 = h*feval(dEgs,x + h/2,y + K1/2);
K3 h*feval(dEgs,x + h/2,y + K2/2);
K4 h*feval(dEgs,x+h,y + K3);

vy =v + (K1 + 2*K2 + 2*K3 + K4)/6;
X = X + h;

xSol(i) = x; ySol(di,:) =vy; % Store current

EXAMPLE 7.3
Use the second-order Runge-Kutta method to integrate

y =siny y(0) =1

e b (55kw annd - e 3590l - I e ol

soln.

from x = 0 to 0.5 in steps of i = 0.1. Keep four decimal places in the computations.

Solution In this problem, we have

fx,y) =siny

so that the integration formulas in Egs. (7.9) are

Ki = hf(x, y) =0.1siny

h 1 . 1
K, = hf<x+§,y+ §K1> :0.1sm<y+§Kl>

yx+h =yx)+ K

Noting that y(0) = 1, the integration then proceeds as follows:

K; = 0.1sin1.0000 = 0.0841

0.0841
K, = 0.1sin (1.0000 + ) =0.0863
y(0.1) = 1.0+ 0.0863 = 1.0863
K; = 0.1sin1.0863 = 0.0885
K; =0.1sin (1.0863 + 0'0885> = 0.0905

y(0.2) = 1.0863 + 0.0905 = 1.1768
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and so on. Summary of the computations is shown in the table below.

x| v | & | K |
0.0 | 1.0000 | 0.0841 | 0.0863
0.1 | 1.0863 | 0.0885 | 0.0905
0.2 | 1.1768 | 0.0923 | 0.0940
0.3 | 1.2708 | 0.0955 | 0.0968
0.4 | 1.3676 | 0.0979 | 0.0988
0.5 | 1.4664

The exact solution can be shown to be
x(y) = In(csc y — cot y) + 0.604582

which yields x(1.4664) = 0.5000. Therefore, up to this point the numerical solution is
accurate to four decimal places. However, it is unlikely that this precision would be
maintained if it were to continue the integration. Since the errors (due to truncation
and roundoff) tend to accumulate, longer integration ranges require better integra-
tion formulas and more significant figures in the computations.

EXAMPLE 7.4
Solve

y'=-01y'=x y0)=0 Y0 =1

from x = 0to 2 in increments of i = 0.25 with the fourth-order Runge-Kutta method.
(This problem was solved by the Taylor series method in Example 7.2.)

Solution Letting y; = y and y» = y’, the equivalent first-order equations are

/ yi Y2
F , = = =
Loyl =y |:J’é:| |:—0-1Y2—x]

which are coded in the following function:

function F = fex7_4(x,y)
% Differential. eqgs. used in Example 7.4

F = zeros(1l,2);
F(1) = y(2); F(2) = -0.1*y(2) - x;

Comparing the function fex7_4 here with fex7_2 in Example 7.2, we note that
it is much simpler to input the differential equations for the Runge-Kutta method
than for the Taylor series method. Here are the results of integration:

>> [x,y] = runKut4(@fex7_4,0,[0 1],2,0.25);
>> printSol(x,y,1)
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x vyl y2
0.0000e+000 0.0000e+000 1.0000e+000
2.5000e-001 2.4431e-001 9.4432e-001
5.0000e-001 4.6713e-001 8.2829e-001
7.5000e-001 6.5355e-001 6.5339e-001
1.0000e+000 7.8904e-001 4.2110e-001
1.2500e+000 8.5943e-001 1.3281e-001
1.5000e+000 8.5090e-001 -2.1009e-001
1.7500e+000 7.4995e-001 -6.0625e-001
2.0000e+000 5.4345e-001 -1.0543e+000

These results are the same as obtained by the Taylor series method in Example
7.2. This was expected, since both methods are of the same order.

EXAMPLE 7.5
Use the fourth-order Runge-Kutta method to integrate

y =3y —4e” y0) =1

from x = 0 to 10 in steps of & = 0.1. Compare the result with the analytical solution
y=e"

Solution The function specifying the differential equation is

function F = fex7_5(x,y)

% Differential eq. used in Example 7.5.
F = 3*y - 4*exp(-x);
The solution is (every 20th line was printed):

>> [x,y] = runKut4(@fex7_5,0,1,10,0.1);
>> printSol(x,y,20)

X vl

.0000e+000 1.0000e+000

.0000e+000 1.3250e-001

.0000e+000 -1.1237e+000

.0000e+000 -4.6056e+002

.0000e+000 -1.8575e+005

.0000e+001 -7.4912e+007

R 0 o & N O

It is clear that something went wrong. According to the analytical solution, y
should decrease to zero with increasing x, but the output shows the opposite trend:
after an initial decrease, the magnitude of y increases dramatically. The explanation
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is found by taking a closer look at the analytical solution. The general solution of the
given differential equation is

y=Ce*+e*

which can be verified by substitution. The initial condition y(0) = 1 yields C = 0, so
that the solution to the problem is indeed y = e™*.

The cause of trouble in the numerical solution is the dormant term Ce3*. Sup-
pose that the initial condition contains a small error ¢, so that we have y(0) = 1 + «.
This changes the analytical solution to

y = 883x 4 e *

We now see that the term containing the error ¢ becomes dominant as x is increased.
Since errors inherent in the numerical solution have the same effect as small changes
in initial conditions, we conclude that our numerical solution is the victim of numer-
ical instability due to sensitivity of the solution to initial conditions. The lesson here
is: Do not always trust the results of numerical integration.

EXAMPLE 7.6

A spacecraft is launched at the altitude H = 772 km above the sea level with the
speed vy = 6700 m/s in the direction shown. The differential equations describing
the motion of the spacecraft are

GM, . 270

. .2
F=ro — 0=
r2 r

where r and 6 are the polar coordinates of the spacecraft. The constants involved in
the motion are

G = 6.672 x 10~ m®kg's~? = universal gravitational constant
M, = 5.9742 x 10** kg = mass of the earth
R, = 6378.14 km = radius of the earth at sea level

(1) Derive the first-order differential equations and the initial conditions of the form
v = F(t,y), y(0) = b. (2) Use the fourth-order Runge-Kutta method to integrate the
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equations from the time of launch until the spacecraft hits the earth. Determine 6 at
the impact site.

Solution of Part (1) We have

GM, = (6.672 x 107'") (5.9742 x 10**) = 3.9860 x 10'* m*s~?

Letting
N r
_|
y Vs 0
Va 6

the equivalent first-order equations become

n N

y= Y2 | | yoyi —3.9860 x 10'/y3
73 V3
Va —2Y1¥3/Yo

with the initial conditions
r(0) = R, + H= R, = (6378.14 4+ 772) x 10° = 7.15014 x 10° m
70)=0
0(0) =0
6(0) = vy/r(0) = (6700) /(7.15014 x 10°) = 0.937045 x 103 rad/s
Therefore,

7.15014 x 108

y(0) = 0

0.937045 x 1073

Solution of Part (2) The function that returns the differential equations is

function F = fex7_6(x,y)

% Differential eqgs. used in Example 7.6.

F = zeros(1l,4);
F(1) = y(2);

F(2) = y(1)*y(4)"2 - 3.9860el14/y(1)"2;
F(3) = y(4);
F(4) = -2*y(2)*y(4)/y(1);

The program used for numerical integration is listed below. Note that the inde-
pendent variable ¢ is denoted by x.
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% Example 7.6 (Runge--Kutta integration)

x = 0; y = [7.15014e6 0 0 0.937045e-3];
xStop = 1200; h = 50; freq = 2;

[xSol,ySol] = runKut4(@fex7_6,x,y,xStop,h);
printSol(xSol,ySol, freq)

Here is the output:

>> X vl y2 y3 v4

0.0000e+000 7.1501e+006 0.0000e+000 0.0000e+000 9.3704e-004
1.0000e+002 7.1426e+006 -1.5173e+002 9.3771e-002 9.3904e-004
2.0000e+002 7.1198e+006 -3.0276e+002 1.8794e-001 9.4504e-004
3.0000e+002 7.0820e+006 -4.5236e+002 2.8292e-001 9.5515e-004
4.0000e+002 7.0294e+006 -5.9973e+002 3.7911e-001 9.6951e-004
5.0000e+002 6.9622e+006 -7.4393e+002 4.7697e-001 9.8832e-004
6.0000e+002 6.8808e+006 -8.8389e+002 5.7693e-001 1.0118e-003
7.0000e+002 6.7856e+006 -1.0183e+003 6.7950e-001 1.0404e-003
8.0000e+002 6.6773e+006 -1.1456e+003 7.8520e-001 1.0744e-003
9.0000e+002 6.5568e+006 -1.2639e+003 8.9459e-001 1.1143e-003
1.0000e+003 6.4250e+006 -1.3708e+003 1.0083e+000 1.1605e-003
1.1000e+003 6.2831e+006 -1.4634e+003 1.1269e+000 1.2135e-003
1.2000e+003 6.1329e+006 -1.5384e+003 1.2512e+000 1.2737e-003

The spacecraft hits the earth when r equals R, = 6.378 14 x 10% m. This occurs
between ¢ = 1000 and 1100 s. A more accurate value of ¢ can be obtained polyno-
mial interpolation. If no great precision is needed, linear interpolation will do. Letting
1000 + At be the time of impact, we can write

r(1000 + Af) = Re
Expanding r in a two-term Taylor series, we get
r(1000) + r'(1000)At = R,
6.4250 x 10° + (—1.3708 x 10°) Ar = 6378.14 x 10°
from which
At =34.184s

The coordinate 6 of the impact site can be estimated in a similar manner. Using
again two terms of the Taylor series, we have

6(1000 + Af) = §(1000) + 6'(1000) At
= 1.0083 + (1.1605 x 10~%) (34.184)

= 1.0480 rad = 60.00°
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PROBLEM SET 7.1

1. Given
y +4y =x° y(0) =1

compute y(0.1) using one step of the Taylor series method of order (a) two and
(b) four. Compare the result with the analytical solution

31, 1, 1 1
YO =3 T gt
2. Solve Problem 1 with one step of the Runge-Kutta method of order (a) two and

(b) four.
3. Integrate

y =siny y0) =1

from x =0 to 0.5 with the second-order Taylor series method using i = 0.1.
Compare the result with Example 7.3.
4. Verify that the problem

y=y"  y0=0

has two solutions: y = 0 and y = (2x/3)%2. Which of the solutions would be re-
produced by numerical integration if the initial condition is set at (a) y = 0 and
(b) y = 107162 Verify your conclusions by integrating with any numerical method.

5. Convert the following differential equations into first-order equations of the
formy’ = F(x, y):

(@ Iny +y=sinx
b) y'y—xy-2y"=0
© y®—-4y"J1-y2=0
@ () =[32yx -y
6. In the following sets of coupled differential equations ¢ is the independent vari-
able. Convert these equations into first-order equations of the form y = F(z, y):

@ y=x-2y X=y—x

b j=-y@@+)"" k=—-x(P+%)
() j*+tsiny =4x xX+tcosy =4y

/4 32

7. M The differential equation for the motion of a simple pendulum is
d*o g .
ﬁ = —Z Sll’19
where
6 = angular displacement from the vertical
g = gravitational acceleration

L = length of the pendulum
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With the transformation t = #./g/ L the equation becomes

dze

T

Use numerical integration to determine the period of the pendulum if the am-
plitude is 6y = 1 rad. Note that for small amplitudes (sin® ~ 6) the period is
2n/L]/g.

8. W A skydiver of mass m in a vertical free fall experiences an aerodynamic drag
force Fp = cpj?, where y is measured downward from the start of the fall. The
differential equation describing the fall is

. Cp .
y=g— =7

Determine the time of a 5000-m fall. Use g = 9.80665 m/s?, Cp = 0.2028 kg/m,
and m = 80 kg.
9.

K P(t)

The spring—-mass system is at rest when the force P(¢) is applied, where

10t N whent <2s

P =
® 20N whent>2s

The differential equation for the ensuing motion is

. Pk
Y= m

Determine the maximum displacement of the mass. Use m = 2.5 kg and k =
75 N/m.
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10. m

I

The conical float is free to slide on a vertical rod. When the float is disturbed
from its equilibrium position, it undergoes oscillating motion described by the
differential equation

y=g(-ay’)

where a = 16 m~3 (determined by the density and dimensions of the float) and
g =9.80665 m/s?. If the float is raised to the position y = 0.1 m and released,
determine the period and the amplitude of the oscillations..

11. m
I_’_I—’Y(t)

The pendulum is suspended from a sliding collar. The system is at rest when the
oscillating motion y(¢f) = Ysinwt is imposed on the collar, starting at £ = 0. The
differential equation describing the motion of the pendulum is
. g . w? .
0 =—=sinf + —Y coso sin wt
L L

Plot 6 versus ¢ from ¢ = 0to 10 s and determine the largest 6 during this period.
Use g =9.80665m/s?, L=1.0m, Y = 0.25m, and w = 2.5 rad/s.
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12. &

The system consisting of a sliding mass and a guide rod is at rest with the mass
at r = 0.75 m. At time ¢ = 0, a motor is turned on that imposes the motion
0(t) = (/12) cos =t on the rod. The differential equation describing the result-
ing motion of the slider is

(2, N
Fr=\|— I S1n’ T[t—gsln<7COS7Tt)
12 12

Determine the time when the slider reaches the tip of the rod. Use g=
9.80665 m/s?.
13. m

A ball of mass m = 0.25 kg is launched with the velocity vy = 50 m/s in the di-
rection shown. Assuming that the aerodynamic drag force acting on the ball is
Fp = Cpv®/?, the differential equations describing the motion are

. CD. 1/2 o C‘D. 1/2

X=———iv ==y g
where v = \/x? + j2. Determine the time of flight and the range R. Use Cp =
0.03 kg/(m-s)'/? and g = 9.80665 m/s?.

14. W The differential equation describing the angular position 6 of mechanical

arm is

j_ab—6) —od"
146

where a = 100 s72 and b = 15. If §(0) = 27 and §(0) = 0, compute 6 and § when
t=05s.
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15. 1

L = undeformed length
k = stiffness

The mass mis suspended from an elastic cord with an extensional stiffness k and
undeformed length L. If the mass is released from rest at § = 60° with the cord
unstretched, find the length r of the cord when the position 6 = 0 is reached for
the first time. The differential equations describing the motion are

. k
= r92+gcose e (= D)
m

§_ —270 — gsin6
B r
Use g = 9.80665 m/s?, k = 40 N/m, L = 0.5m, and m = 0.25 kg.
16. W Solve Problem 15 if the pendulum is released from the position 6 = 60° with

the cord stretched by 0.075 m.
17. ®

Y

m

w”

Consider the mass—spring system where dry friction is present between the block
and the horizontal surface. The frictional force has a constant magnitude pumg
(u is the coefficient of friction) and always opposes the motion. The differential
equation for the motion of the block can be expressed as

Lk
y=-,Y 18 7
where y is measured from the position where the spring is unstretched. If the
block is released from rest at y = yy, verify by numerical integration that the next
positive peak value of y is yy — 4umg/ k (this relationship can be derived analyt-

ically). Use k = 3000 N/m, m = 6 kg, u = 0.5, g = 9.80665 m/s?, and y, = 0.1 m.
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18. M Integrate the following problems from x = 0 to 20 and plot y versus x:

@ y'+050*-D+y=0 yO=1 y©0=0
(b) y” = ycos2x y0) =0 Yo =1

These differential equations arise in nonlinear vibration analysis.
19. W The solution of the problem

" 1/ _i — ! —
y+;y+(l xz)y yoO=0 yO=1

is the Bessel function J;(x). Use numerical integration to compute J;(5) and
compare the result with —0.327579, the value listed in mathematical tables.
Hint: to avoid singularity at x = 0, start the integration at x = 10712,

20. M Consider the initial value problem

y" =16.81y y(0) =1.0 y'(0) = —4.1

(a) Derive the analytical solution. (b) Do you anticipate difficulties in numerical
solution of this problem? (c) Try numerical integration from x = 0 to 8 to see if
your concerns were justified.

21. m

2R

Kirchoff’s equations for the circuit shown are

di

Ld—; + Ri; 4+ 2R, + iy) = E(1) (a)
‘LCZ + Riy + 2R(, + 1)) = EQ®) b)

Differentiating Eq. (b) and substituting the charge—current relationship dq,/dt =
ip, we get

diy —3Ri, — 2Ri, + E(¥)

dr ~ L

dip 2 di ip 1 dE

dr ~ "3dr 3RC ' 3Rdr
We could substitute di; /dt from Eq. (c) into Eq. (d), so that the latter would as-
sume the usual form di,/dt = f(t, i, i), but it is more convenient to leave the
equations as they are. Assuming that the voltage source is turned on at time ¢t = 0,

(©)

(d)
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plot the loop currents i; and i, from ¢t = 0 to 0.05 s. Use E(f) = 240sin(120xt)V,
R=10Q,L=02x103H,andC=35x 103F

22. 1
iy i
A
E ('321 . <~ C
i i
R R

The constant voltage source E of the circuit shown is turned on at ¢t = 0, caus-
ing transient currents i, and i in the two loops that last about 0.05 s. Plot
these currents from ¢ = 0 to 0.05 s, using the following data: E =9V, R=0.25¢,
L=1.2x10"3H, and C =5 x 1073 E Kirchoff’s equations for the two loops are

di . —q2
L— + R =F
dr + Ry + C
di, . =G G2
L—+ R — =0
dr + Rip, + C + C

Additional two equations are the current—charge relationships

d6/1 . diy
——=h —— =B
dt dt
23. Write a function for second-order Runge-Kutta method of integration. You may
use runKut4 as a model. Use the function to solve the problem in Example 7.4.
Compare your results with those in Example 7.4.

Stability and Stiffness

Loosely speaking, a method of numerical integration is said to be stable if the effects
of local errors do not accumulate catastrophically; that is, if the global error remains
bounded. If the method is unstable, the global error will increase exponentially, even-
tually causing numerical overflow. Stability has nothing to do with accuracy; in fact,
an inaccurate method can be very stable.

Stability is determined by three factors: the differential equations, the method of
solution, and the value of the increment h. Unfortunately, it is not easy to determine
stability beforehand, unless the differential equation is linear.
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Stability of Euler’s Method
As a simple illustration of stability, consider the problem
y=-iy yO) =8 (7.11)
where A is a positive constant. The exact solution of this problem is
yx) = pe

Let us now investigate what happens when we attempt to solve Eq. (7.11) numer-
ically with Euler’s formula

y(x+h) = yx)+ hy'(x) (7.12)
Substituting y’'(x) = —Ay(x), we get
yx+h=010-1hyx)

If |1 — Ah| > 1, the method is clearly unstable since | y| increases in every integration
step. Thus Euler’s method is stable only if |1 — Ah| < 1, or

h<2/A (7.13)
The results can be extended to a system of n differential equations of the form
y = —Ay (7.14)

where A is a constant matrix with the positive eigenvalues 4;,i = 1, 2, ..., n.Itcan be
shown that Euler’s method of integration formula is stable if

h < 2/Amax (7.15)

where Amax is the largest eigenvalue of A.

Stiffness

An initial value problem is called stiff if some terms in the solution vector y(x) vary
much more rapidly with x than others. Stiffness can be easily predicted for the differ-
ential equations y’ = — Ay with constant coefficient matrix A. The solution of these
equations is y(x) = )_; C;v; exp(—A;x), where A; are the eigenvalues of A and v; are
the corresponding eigenvectors. It is evident that the problem is stiff if there is a large
disparity in the magnitudes of the positive eigenvalues.

Numerical integration of stiff equations requires special care. The step size h
needed for stability is determined by the largest eigenvalue An,, even if the terms
exp(—AmaxX) in the solution decay very rapidly and become insignificant as we move
away from the origin.
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For example, consider the differential equation'®
3" 41001y’ + 1000y = 0 (7.16)

Using y1 = y and y, = y/, the equivalent first-order equations are

r_ V2
Y =1 Z1000y, — 1001y,

A 0 -1
1000 1001

The eigenvalues of A are the roots of

In this case

—A -1
1000 1001 — A

A — M| =

Expanding the determinant we get
—A(1001 — 1) +1000 =0

which has the solutions A; = 1 and 1, = 1000. These equations are clearly stiff. Ac-
cording to Eq. (7.15), we would need h < 2/1, = 0.002 for Euler’s method to be sta-
ble. The Runge-Kutta method would have approximately the same limitation on the
step size.

When the problem is very stiff, the usual methods of solution, such as the Runge—
Kutta formulas, become impractical due to the very small % required for stability.
These problems are best solved with methods that are specially designed for stiff
equations. Stiff problem solvers, which are outside the scope of this text, have much
better stability characteristics; some of them are even unconditionally stable. How-
ever, the higher degree of stability comes at a cost — the general rule is that stability
can be improved only by reducing the order of the method (and thus increasing the
truncation error).

EXAMPLE 7.7
(1) Show that the problem

19
Y'=-,y-10y  yO0O=-9 y0=0

is moderately stiff and estimate /.y, the largest value of h for which the Runge-
Kutta method would be stable. (2) Confirm the estimate by computing y(10) with
h =~ hnax/2 and h ~ 2hpyay.

18 This example is taken from Pearson, C.E., Numerical Methods in Engineering and Science, van
Nostrand and Reinhold, New York, 1986.
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Solution of Part (1) With the notation y = y; and y’ = y» the equivalent first-order
differential equations are

Y2
y = 9 N
——y1 — 10y y2
4
where
[0 -1
A =
19,
4

The eigenvalues of A are given by

-2 -1
[A—All=|19 =0

whichyields 4; = 1/2 and A, = 19/2. Because 1, is quite a bit larger than 1,, the equa-
tions are moderately stiff.

Solution of Part (2) An estimate for the upper limit of the stable range of & can be
obtained from Eq. (7.15):

2
Bmax = —— = ——= = 0.2153
T Amax | 19/2
Although this formula is strictly valid for Euler’s method, it is usually not too far off
for higher-order integration formulas.
Here are the results from the Runge-Kutta method with h = 0.1 (by specifying
freq = 0inprintSol, only the initial and final values were printed):

>> X vl y2
0.0000e+000 -9.0000e+000 0.0000e+000
1.0000e+001 -6.4011e-002 3.2005e-002

The analytical solution is

19 _, 1
_ 20 w2 L 1oxg2
y(x) 5 e + 2e

yielding y(10) = —0.0640 11, which agrees with the value obtained numerically.
With h = 0.5 we encountered instability, as expected:

>> X vl y2
0.0000e+000 -9.0000e+000 0.0000e+000
1.0000e+001 2.7030e+020 -2.5678e+021
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Adaptive Runge-Kutta Method

Determination of a suitable step size h can be a major headache in numerical inte-
gration. If h is too large, the truncation error may be unacceptable; if i is too small,
we are squandering computational resources. Moreover, a constant step size may
not be appropriate for the entire range of integration. For example, if the solution
curve starts off with rapid changes before becoming smooth (as in a stiff problem),
we should use a small & at the beginning and increase it as we reach the smooth re-
gion. This is where adaptive methods come in. They estimate the truncation error at
each integration step and automatically adjust the step size to keep the error within
prescribed limits.

The adaptive Runge-Kutta methods use so-called embedded integration formu-
las. These formulas come in pairs: one formula has the integration order m, the other
one is of order m + 1. The idea is to use both formulas to advance the solution from x
to x + h. Denoting the results by y,,(x + /) and y,,..1(x + h), an estimate of the trun-
cation error in the formula of order mis obtained from:

E(h) =ymi(x+ ) —yu(x+ h) (7.17)

What makes the embedded formulas attractive is that they share the points where
F(x,y) is evaluated. This means that once y,,(x + h) has been computed, relatively
small additional effort is required to calculate yy,1(x + h).

Here are the Runge-Kutta embedded formulas of orders five and four that
were originally derived by Fehlberg; hence, they are known as Runge-Kutta-Fehlberg

formulas:
K, = hF(x, y)
i1
Ki=hF|x+Ahy+) BK;|, i=23,...,6 (7.18)
j=0
6
ys(x + h) = y(x) + Z CK; (fifth-order formula) (7.19a)
i=1
6
valx + h) =yx) + Z D/K; (fourth-order formula) (7.19b)

i=1

The coefficients appearing in these formulas are not unique. The tables below give
the coefficients proposed by Cash and Karp'? which are claimed to be an improve-
ment over Fehlberg’s original values.

19 Cash, J.R., and Carp, A.H., ACM Transactions on Mathematical Software 16, 201-222, 1990.
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1 37 2825
378 27648
1 1
2| = = - - - - 0 0
5 5
s13 03 8 250 | 18575
10 40 40 621 48384
3] 3 9 6 125 | 13525
5 10 10 5 594 55296
11 2
54 2 27 27 14336
6 z 1631 E 575 44275 253 512 l
8 55296 512 13824 110592 4096 | 1771 4

Table 7.1. Cash—Karp coefficients for Runge-Kutta-Fehlberg formulas

The solution is advanced with the fifth-order formula in Eq. (7.19a). The fourth-
order formula is used only implicitly in estimating the truncation error

6
E(h) =ys(x+ h) —ys(x + h) = Z(Ci — D)K; (7.20)

i=1

Since Eq. (7.20) actually applies to the fourth-order formula, it tends to overestimate
the error in the fifth-order formula.

Note that E(h) is a vector, its components E;(h) representing the errors in the
dependent variables y;. This brings up the question: What is the error measure e(h)
that we wish to control? There is no single choice that works well in all problems. If
we want to control the largest component of E(h), the error measure would be

e(h) = max | E;(h)| (7.21)

We could also control some gross measure of the error, such as the root-mean-square
error defined by

(7.22)

where 7 is the number of first-order equations. Then we would use

e(h) = E(h) (7.23)
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for the error measure. Since the root-mean-square error is easier to handle, we adopt
it for our program.

Error control is achieved by adjusting the increment % so that the per-step error
e is approximately equal to a prescribed tolerance ¢. Noting that the truncation error
in the fourth-order formula is O(k?), we conclude that

en) <hl>5 (a)
e(h)  \

Let us now suppose that we performed an integration step with h; that resulted in
the error e(h;). The step size h, that we should have used can now be obtained from
Eq. (a) by setting e(h,) = ¢:

(b)

e(ly) ]1/5

&

h2:h1|:

If h, > hy, we could repeat the integration step with h,, but since the error associated
with h; was below the tolerance, that would be a waste of a perfectly good result. So
we accept the current step and try 7, in the next step. On the other hand, if h, < hy,
we must scrap the current step and repeat it with h,. As Eq. (b) is only an approxima-
tion, it is prudent to incorporate a small margin of safety. In our program, we use the
formula

(7.24)

1/5
hy = 0.9k [e(hl)]
&

Recall that e(h) applies to a single integration step; that is, it is a measure of the
local truncation error. The all-important global truncation error is due to the accu-
mulation of the local errors. What should ¢ be set at in order to achieve a global error
no greater than egoba? Since e(h) is a conservative estimate of the actual error, set-
ting ¢ = egobal Will usually be adequate. If the number integration steps is large, it is
advisable to decrease ¢ accordingly.

Is there any reason to use the nonadaptive methods at all? Usually no; however,
there are special cases where adaptive methods break down. For example, adaptive
methods generally do not work if F(x, y) contains discontinuous functions. Because
the error behaves erratically at the point of discontinuity, the program can get stuck
in an infinite loop trying to find the appropriate value of 4. We would also use a non-
adaptive method if the output is to have evenly spaced values of x.

B runKut5

The adaptive Runge-Kutta method is implemented in the function runkut5 listed
below. The input argument his the trial value of the increment for the first integration
step.

function [xSol,ySol] = runKut5(dEgs,x,y,xStop,h,eTol)

% 5th-order Runge--Kutta integration.
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%
%
%
%
%
%
%
%
%
%
%
%

USAGE: [xSol,ySol] = runKut5(dEgs,x,y,xStop,h,eTol)
INPUT:
dEgqs = handle of function that specifies the
1st-order differential equations
F(x,y) = [dyl/dx dy2/dx dy2/dx ...].
X,Y = initial values; y must be row vector.

xStop = terminal value of x.

h = trial value of increment of x.
eTol = per-step error tolerance (default = 1.0e-6).
OUTPUT:

xSol = x-values at which solution is computed.

ySol = values of y corresponding to the x-values.

if size(y,1) > 1 ; y =y’; end % y must be row vector

if nargin < 6; eTol = 1.0e-6; end

n
A
B

C
D
%

= length(y);
= [0 1/5 3/10 3/5 1 7/81;
=[ ©0 0 0 0 0
1/5 0 0 0 0
3/40 9/40 0 0 0
3/10 -9/10 6/5 0
-11/54 5/2  -70/27 35/27 0

1631/55296 175/512 575/13824 44275/110592 253/4096];
[37/378 0 250/621 125/594 0 512/1771];
= [2825/27648 0 18575/48384 13525/55296 277/14336 1/41];

Initialize solution

xSol = zeros(2,1); ySol = zeros(2,n);
xS0l1(1l) = x; ySol(l,:) = vy;

stopper = 0; k = 1;

for p = 2:5000

% Compute K’s from Eq. (7.18)
K = zeros(6,n);
K(1,:) = h*feval(dEgs,x,y);
for i = 2:6

BK = zeros(1l,n);

for j = 1:i-1

BK = BK + B(i,j)*K(j,:);

end

K(i,:) = h*feval(dEgs, x + A(i)*h, y + BK);
end
% Compute change in y and per-step error from
% Egs.(7.19) & (7.20)
dy = zeros(l,n); E = zeros(l,n);

e b (55ke annd - e 3590l - I e ol
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for i = 1:6
dy = dy + C(i)*K(di,:);
E =E + (C(1i) - D(i))*K(4i,:);
end
e = sqrt(sum(E.*E)/n);
% If error within tolerance, accept results and
% check for termination
if e <= eTol

vy =V +dy; X = X + h;

k =k + 1;
xSol(k) = x; ySol(k,:) = v;
if stopper == 1;
break
end

end
% Size of next integration step from Eq. (7.24)
hNext = 0.9*h*(eTol/e)"0.2;
% Check if next step is the last one (works
% with positive and negative h)
if (h > 0) == (x + hNext >= xStop )
hNext = xStop - X; stopper = 1;
end
h = hNext;

end

EXAMPLE 7.8
The aerodynamic drag force acting on a certain object in free fall can be approxi-

mated by
Fp = av?e™™
where
v = velocity of the object in m/s
y = elevation of the object in meters
a=745kg/m

b=1053x 10> m™*

The exponential term accounts for the change of air density with elevation. The dif-
ferential equation describing the fall is

my = —-mg+ Fp
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where g =9.80665 m/s? and m = 114 kg is the mass of the object. If the object is
released at an elevation of 9 km, determine its elevation and speed after a 10 s fall
with the adaptive Runge-Kutta method.

Solution The differential equation and the initial conditions are
. a .,
= — —_ _b
y g+ mY exp(—by)

7.45
= —9.80665 + < exp(~10.53 x 10~°y)

y(0) =9000m  j(0) =0

Letting y; = y and y» = y, the equivalent first-order equations and the initial condi-
tions become

_ || Y2
v= |:J"21| B |:—9.80665 + (65.351 x 107%) (32)? exp(—10.53 x 105y1):|

. [900(?111}

The function describing the differential equations is

function F = fex7_8(x,y)
% Diff. eqs. used in Example 7.8

F = zeros(1,2);
F(L v(2);
F(2) = -9.80665...
+ 65.351e-3 * y(2)°2 * exp(-10.53e-5 * y(1));

The commands for performing the integration and displaying the results are
shown below. We specified a per-step error tolerance of 1072 in runkuts5. Consid-
ering the magnitude of y, this should be enough for five decimal point accuracy in
the solution.

>> [x,y] = runKut5(@fex7_8,0,[9000 0],10,0.5,1.0e-2);
>> printSol(x,y,1

Execution of the commands resulted in the following output:

>> X vl y2
0.0000e+000 9.0000e+003 0.0000e+000
5.0000e-001 8.9988e+003 -4.8043e+000
1.9246e+000 8.9841e+003 -1.4632e+001



www.MatlabKar.com

Initial Value Problems

.2080e+000
.5031e+000
.9732e+000
.7786e+000
.0000e+001

RN U W

0 0 0 0

.9627e+003
.9384e+003
.9099e+003
.8746e+003
.8312e+003

-1

-1
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.8111e+001
-1.
-1.

9195e+001
9501e+001

.9549e+001
-1.

9519e+001

The first integration step was carried out with the prescribed trial value 2 = 0.5 s.
Apparently the error was well within the tolerance, so that the step was accepted.
Subsequent step sizes, determined from Eq. (9.24), were considerably larger.

Inspecting the output, we see that at t = 10 s the object is moving with the speed
v = —y =19.52 m/s at an elevation of y = 8831 m.

EXAMPLE 7.9

Integrate the moderately stiff problem

y

"

19
= —— —1 !
27 0y

YO =-9 Y0 =0

from x = 0 to 10 with the adaptive Runge-Kutta method and plot the results (this
problem also appeared in Example 7.7).

Solution Since we use an adaptive method, there is no need to worry about the stable
range of h, as we did in Example 7.7. As long as we specify a reasonable tolerance
for the per-step error, the algorithm will find the appropriate step size. Here are the

commands and the resulting output:

>> [x,y] = runKut5(@fex7_7,0,[-9
>> printSol(x,y,4)

>> X

.0000e+000
.8941e-002
.1932e-001
.7058e-001
.7229e-001
.6922e-001
.4009e+000
.8558e+000
.3990e+000
.9545e+000
.5596e+000
.1159e+000
.0000e+001

R © N U b N R 0 Ul w N O O

-9.
-8.
-8.
-7.

-7

-2

-2

vl
0000e+000
8461e+000
4511e+000
8784e+000

.1338e+000
-6.
-4.

1513e+000
7153e+000

.2783e+000
-1.
-4.

0531e+000
8385e-001

.1685e-001
-9.
-6.

9591e-002
4010e-002

W b PN R NW W W W N O

0]1,10,0.1);

y2

.0000e+000
.6651e+000
.6653e+000
.8061e+000
.5473e+000
.0745e+000
.3577e+000
.1391e+000
.2656e-001
.4193e-001
.0843e-001
.9794e-002
.2005e-002

The results are in agreement with the analytical solution.
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The plots of y and y’ show every fourth integration step. Note the high density of
points near x = 0 where y’ changes rapidly. As the y’-curve becomes smoother, the
distance between the points increases.

4.0 | }
2.0
|
0.0
4.0 .
6.0 :
8.0 ]
|

1000 2.0 4.0 6.|0 8.0 10.0

X

Bulirsch-Stoer Method
Midpoint Method

The midpoint formula of numerical integration of y’ = F(x, y) is

y(x+ h) = y(x — h) + 2hF [x, y(x)] (7.25)

It is a second-order formula, like the modified Euler’s formula. We discuss it here
because it is the basis of the powerful Bulirsch-Stoer method, which is the technique
of choice in problems where high accuracy is required.

Figure 7.3 illustrates the midpoint formula for a single differential equation y’ =
f(x, ¥). The change in y over the two panels shown is

x+h

y(x+h)—y(x—h)=f . ¥y (x)dx

X—

which equals the area under the y’(x) curve. The midpoint method approximates this
area by the area 2hf(x, y) of the cross-hatched rectangle.

Consider now advancing the solution of y'(x) = F(x,y) from x = x; to xo + H
with the midpoint formula. We divide the interval of integration into n steps of length
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y(x) —
Figure 7.3. Graphical representation of
A f( X, y) midpoint formula.
h %
x-h X x+h %

h = H/neach, as shown in Fig. 7.4 and carry out the computations

y1 = Yo + hFg
Y2 = Yo + 2hF;
ys = Y1 + 2hF, (7.26)

Yn =Yn-2+ 2thfl

Here we used the notation y; = y(x;) and F; = F(x;, y;). The first of Egs. (7.26) uses
the Euler formula to “seed” the midpoint method; the other equations are midpoint
formulas. The final result is obtained by averaging y, in Eq. (7.26) and the estimate
Yn &~ Yn-1 + hF, available from Euler formula:

1
Vo + H) = 5 [V + (Vn-1 + HEy)] (7.27)

Richardson Extrapolation

It can be shown that the error in Eq. (7.27) is
E=c/?+ch +cshf+- -

Herein lies the great utility of the midpoint method: we can eliminate as many of the
leading error terms as we wish by Richarson’s extrapolation. For example, we could
compute y(xo + H) with a certain value of h and then repeat process with h/2. De-
noting the corresponding results by g(h) and g(//2), Richardson’s extrapolation — see
Eq. (5.9) - then yields the improved result

4g(h/2) — g(h)

3

which is fourth-order accurate. Another round of integration with h/4 followed by
Richardson’s extrapolation gets us sixth-order accuracy, and so forth. Rather than

Ybetter(xo + H) =

H |

| |
X, Xi Xo X M—WX

n- n

Figure 7.4. Mesh used in the midpoint method.
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halving the interval in successive integrations, we use the sequence h/2, h/4, h/6,
h/8, h/10, - - -, which has been found to be more economical.

The ys in Egs. (7.26) should be viewed as a temporary variables, because unlike
y(xo + H), they cannot be refined by Richardson’s extrapolation.

H midpoint

The function integrate in this module combines the midpoint method with
Richardson extrapolation. The first application of the midpoint method uses two in-
tegration steps. The number of steps is increased by 2 in successive integrations, each
integration being followed by Richardson extrapolation. The procedure is stopped
when two successive solutions differ (in the root-mean-square sense) by less than a
prescribed tolerance.

function y = midpoint(dEgs,x,y,xStop,tol)

% Modified midpoint method for integration of y’ = F(x,y).

% USAGE: y = midpoint(dEgs,xStart,yStart,xStop,tol)

% INPUT:

% dEgqs = handle of function that returns the first-order

% differential equations F(x,y) = [dyl/dx,dy2/dx,...].
% x, y = initial values; y must be a row vector.

% xStop = terminal value of x.

% tol = per-step error tolerance (default = 1.0e-6).
% OUTPUT:

%y = y(xStop).

if size(y,1) > 1 ; vy =y’; end % y must be row vector
if nargin <5; tol = 1.0e-6; end
kMax = 21;
n = length(y);
r = zeros(kMax,n); % Storage for Richardson extrapolation.
% Start with two integration steps.
nSteps = 2;
r(l,1:n) = mid(dEgs,x,y,XStop,nSteps);
r0ld = r(1,1:n);
for k = 2:kMax
% Increase the number of steps by 2 & refine results by
% Richardson extrapolation.
nSteps = 2*%k;
r(k,1:n) = mid(dEgs,x,y,XStop,nSteps);
r = richardson(r,k,n);
% Check for convergence.
dr = r(1,1:n) - r0ld;
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e = sqgrt(dot(dr,dr)/n);
if e < tol; v = r(1,1:n); return; end
rOld = r(1,1:n);

end

error(’Midpoint method did not converge’)

function r = richardson(r,k,n)
% Richardson extrapolation.
for j = k-1:-1:1
c =(k/(k-1))"(2*(k-3));
r(j,1:n) =(c*r(j+1l,1:n) - r(j,1:n))/(c - 1.0);
end

return

function y = mid(dEgs,x,y,xStop,nSteps)
% Midpoint formulas.
h = (xStop - x)/nSteps;
y0 =y;
vyl = y0O + h*feval(dEqgs,x,y0);
for i = 1:nSteps-1
X = X + h;
y2 = y0 + 2.0*h*feval(dEgs,x,y1l);
y0 = vy1;
vyl = y2;
end
y = 0.5*(yl + yO + h*feval(dEqgs,x,y2));

Bulirsch-Stoer Algorithm

When used on its own, the module midpoint has a major shortcoming: the solution
at points between the initial and final values of x cannot be refined by Richardson ex-
trapolation, so that y is usable only at the last point. This deficiency is rectified in the
Bulirsch-Stoer method. The fundamental idea behind the method is simple: apply
the midpoint method in a piecewise fashion. That is, advance the solution in stages
of length H, using the midpoint method with Richardson extrapolation to perform
the integration in each stage. The value of H can be quite large, since the precision of
the result is determined mainly by the step length % in the midpoint method, not by
H.However, if His too large, the midpoint method may not converge. If this happens,
try smaller value of H or larger error tolerance.

The original Bulirsch and Stoer technique?’ is a very complex procedure that in-
corporates many refinements (including automatic adjustment of H) missing in our

20 Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer, New York, 1980.
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algorithm. However, the function bulStoer given below retains the essential idea of
Bulirsch and Stoer.

What are the relative merits of adaptive Runge-Kutta and Bulirsch-Stoer
methods? The Runge-Kutta method is more robust, having higher tolerance for
nonsmooth functions and stiff problems. In applications where extremely high pre-
cision is not required, it is also more efficient. Bulirsch—Stoer algorithm (in its original
form) is used mainly in problems where high accuracy is of paramount importance.
Our simplified version is no more accurate than the adaptive Runge-Kutta method,
but it is useful if the output is to appear at equally spaced values of x.

B bulStoer

This function contains our greatly simplified algorithm for the Bulirsch-Stoer
method.

function [xSol,ySol] = bulStoer(dEgs,x,y,xStop,H,tol)

% Simplified Bulirsch-Stoer method for integration of y’ = F(x,v).
% USAGE: [xSol,ySol] = bulStoer(dEgs,x,y,XStop,H,tol)

% INPUT:

% dEgqs = handle of function that returns the first-order

% differential equations F(x,y) = [dyl/dx,dy2/dx,...].

% x, vy = initial values; y must be a row vector.

% xStop = terminal value of x.

% H = increment of x at which solution is stored.
% tol = per-step error tolerance (default = 1.0e-6).
% OUTPUT:

% xSol, ySol = solution at increments H.

if size(y,1) > 1 ; vy =y’; end % y must be row vector
if nargin < 6; tol = 1.0e-6; end

n = length(y);

xSol = zeros(2,1); ySol = zeros(2,n);

xS0l(1l) = x; ySol(l,:) = vy;

k = 1;
while x < xStop
k =k + 1;

H = min(H,xStop - x);

y = midpoint(dEqgs,x,y,x + H,tol);
X = X + H;

xSol(k) = x; ySol(k,:) = vy;

end
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EXAMPLE 7.10
Compute the solution of the initial value problem

y =siny  y0)=1

at x = 0.5 with the midpoint formulas using #n = 2 and n = 4, followed by Richardson
extrapolation (this problem was solved with the second-order Runge-Kutta method
in Example 7.3).

Solution With n = 2, the step length is i = 0.25. The midpoint formulas, Egs. (7.26)
and (7.27) yield

Y1=Yo+hfo=1+0.25sin1.0 =1.210368
Y2 = Yo+2hfi =1+ 2(0.25)sin1.210368 = 1.467 873

1
yr(0.5) = E(yl + ¥ + hf)

1
5(1.210 368 + 1.467873 + 0.25sin 1.467 87 3)
1.463 459

Using n = 4, we have h = 0.125 and the midpoint formulas become

Y1=Yo+hp=1+0.1255in1.0 =1.105184
Y2 = Yo+ 2hfi =14 2(0.125)sin 1.105 184 = 1.223 387
¥3 =y +2hf, =1.105184 + 2(0.125) sin 1.223 387 = 1.340 248

Ya = Y2+ 2hfs5 = 1.223387 + 2(0.125) sin 1.340 248 = 1.466 772

1
Yry2(0.5) E(y4 + y3 + hfa)

1
3 (1.466 772 + 1.340248 + 0.125sin 1.466 772)
1.465672

Richardson extrapolation results in

4(1.465672) — 1.463 459
y(0.5) = 3 =1.466410

which compares favorably with the “true” solution y(0.5) = 1.466 404.
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EXAMPLE 7.11

L
f&m
Et) / .ER
J S
a

The differential equations governing the loop current i and the charge g on the ca-
pacitor of the electric circuit shown are

di .. q dq .
La—i-Rz—i-E—E(t) E_l

If the applied voltage E is suddenly increased from zero to 9V, plot the resulting loop
current during the first 10s. Use R=1.0Q, L =2H,and C=0.45E

=[n]-[7]

and substituting the given data, the differential equations become

y= Yo|_ »i
n (=R —y/C+ E)/L

The initial conditions are
0
0 =
y(0) [0}

We solved the problem with the function bulStoer using the increment H =
0.5 s. The following program utilizes the plotting facilities of MATLAB:

Solution Letting

% Example 7.11 (Bulirsch-Stoer integration)
[xSol,ySol] = bulStoer(@fex7_11,0,[0 0],10,0.5);
plot(xSol,ySol(:,2),’k-0")

grid on

xlabel(’Time (s)’)

ylabel(’Current (A)’)
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N

Current (A)

-1
) i i i i
0 2 4 6 8 10

Time (s)

Recall that in each interval H (the spacing of open circles) the integration was
performed by the modified midpoint method and refined by Richardson’s extrapo-
lation. Note that we used tol = 1.0e-6 (the default per-step error tolerance). For
higher accuracy, we could decrease this value, but it is then advisable to reduce H
correspondingly. The recommended combinations are

’ tol ‘ H ‘
1.0e-6 | 0.5
1.0e-9 0.2

1.0e-12 | 0.1

PROBLEM SET 7.2

1. Derive the analytical solution of the problem
y'+y —380y=0 y0) =1 y'(0) = —20

Would you expect difficulties in solving this problem numerically?
2. Consider the problem

y =x-10y  y(0) =10

(a) Verify that the analytical solution is y(x) = 0.1x — 0.001 4 10.01e1%*, (b) De-
termine the step size h that you would use in numerical solution with the
(nonadaptive) Runge-Kutta method.

3. W Integrate the initial value problem in Problem 2 from x =0 to 5 with the

Runge-Kutta method using (a) k= 0.1, (b) 2= 0.25, and (c) h = 0.5. Comment
on the results.
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4. M Integrate the initial value problem in Problem 2 from x = 0 to 10 with the adap-
tive Runge-Kutta method.
5. 1

k Y

—I[}—m

C o 0

The differential equation describing the motion of the mass—spring—dashpot sys-
tem is

g lyr Xy o
m m

where m=2 kg, c=460 N-s/m, and k=450 N/m. The initial conditions
are y(0) = 0.01 m and y(0) = 0. (a) Show that this is a stiff problem and deter-
mine a value of & that you would use in numerical integration with the nonadap-
tive Runge—Kutta method. (c) Carry out the integration from ¢ = 0 to 0.2 s with
the chosen £ and plot y versus t.

6. M Integrate the initial value problem specified in Problem 5 with the adaptive

Runge-Kutta method from ¢t = 0 to 0.2 s, and plot j versus ¢.
7. W Compute the numerical solution of the differential equation

y" =16.81y

from x = 0 to 2 with the adaptive Runge-Kutta method. Use the initial conditions
(@) y(0) = 1.0, y'(0) = —4.1; and (b) y(0) = 1.0, y’'(0) = —4.11. Explain the large
difference in the two solutions. Hint: Derive the analytical solutions.

8. W Integrate

V'Y -y =0 y0O=1 y0=0
from x = 0 to 3.5. Investigate whether the sudden increase in y near the upper
limit is real or an artifact caused by instability. Hint: Experiment with different
values of h.
9. M Solve the stiff problem - see Eq. (7.16)
y" 41001y’ 4+ 1000y =0 y) =1 y'©0) =0
from x = 0 to 0.2 with the adaptive Runge-Kutta method and plot j versus x.
10. W Solve
y' 42y +3y=0 y0)=0 y(0)=+2

with the adaptive Runge—Kutta method from x = 0 to 5 (the analytical solution is
y = e *sin/2x).
11. W Use the adaptive Runge-Kutta method to solve the differential equation

y'=2yy'
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from x = 0 to 10 with the initial conditions y(0) = 1, y’(0) = —1. Plot y versus x.
12. W Repeat Problem 11 with the initial conditions y(0) = 0, y’(0) = 1 and the inte-
gration range x = 0 to 1.5.
13. W Use the adaptive Runge-Kutta method to integrate

9
'=l=-=7y]x 0)=5
y (y J’) y

from x = 0 to 5 and plot y versus x.
14. Solve Problem 13 with the Bulirsch-Stoer method using H = 0.5.
15. W Integrate

2y +xy+y=0  yb=0 yQQ)=-2

from x = 1 to 20, and plot y and y’ versus x. Use the Bulirsch-Stoer method.
16. &

i

L

The magnetized iron block of mass m is attached to a spring of stiffness k and
free length L. The block is at rest at x = L when the electromagnet is turned on,
exerting the repulsive force F = ¢/x? on the block. The differential equation of
the resulting motion is

mjé:%—k(x—L)
X

Determine the amplitude and the period of the motion by numerical integra-
tion with the adaptive Runge-Kutta method. Use ¢ =5 N-m?, k=120 N/m,
L =0.2m,and m = 1.0kg.

17. A

The bar A BC is attached to the vertical rod with a horizontal pin. The assembly
is free to rotate about the axis of the rod. Neglecting friction, the equations of
motion of the system are

0 = ¢ sind cos ¢ = —20¢ coto
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If the system is set into motion with the initial conditions 6(0) = 7 /12 rad,
6(0) =0, $(0) = 0, and ¢(0) = 20 rad/s, obtain a numerical solution with the
adaptive Runge-Kutta method from ¢ = 0 to 1.5 s and plot ¢ versus .

18. W Solve the circuit problem in Example 7.11 if R = 0 and

Owhent <0
E(t) = .
9sinwtwhent >0

19. W Solve Problem 21 in Problem Set 7.1 if E = 240V (constant).

20. 1
R, L
YWAWWA 00000,
i [
Et)° R, C
I fip
s ) W,

Kirchoff’s equations for the circuit in the figure are

i
L2 4 Ry + Ry — i) = E(0)
dt
di ) .
L7;+R2(12_ll)+% =0
where
dg _,
a ~ *

Usingthedata Ry =42, R, =102, L =0.032H, C = 0.53F and

20Vif0 <t < 0.005s
E@) = .
0 otherwise

plot the transient loop currents i; and i, from ¢ = 0 to 0.05 s.

21. W Consider a closed biological system populated by M number of prey and N
number of predators. Volterra postulated that the two populations are related by
the differential equations

M=aM—-bMN
N=—-cN+dMN

where a, b, ¢, and d are constants. The steady-state solution is My = c¢/d, Ny =
a/b; if numbers other than these are introduced into the system, the populations
undergo periodic fluctuations. Introducing the notation

n=™M™M  y.=N/N
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allows us to write the differential equations as

1 =aln —ny)
Vo = b(=y2 + y1)2)

Usinga = 1.0/year, b = 0.2/year, y;(0) = 0.1, and y»(0) = 1.0, plot the two popu-
lations from ¢ = 0 to 5 years.
22. W The equations

U= —au+av
UV=cCcu—v—uw

w=—bw+ uv

known as the Lorenz equations, are encountered in theory of fluid dynamics.
Lettinga = 5.0, b = 0.9, and ¢ = 8.2, solve these equations from ¢ = 0 to 10 with
the initial conditions u(0) = 0, v(0) = 1.0, w(0) = 2.0, and plot u(f). Repeat the
solution with ¢ = 8.3. What conclusions can you draw from the results?

23. m

Four mixing tanks are connected by pipes. The fluid in the system is pumped
through the pipes at the rates shown in the figure. The fluid entering the system
contains a chemical of concentration c as indicated. The rate at which mass of
the chemical changes in tank i is

d

ﬁ =X (Qc)in - 2:(Qc)out

Vi
" dr
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where V; is the volume of the tank and Q represents the flow rate in the pipes
connected to it. Applying this equation to each tank, we obtain

dc;

Vi— = —6c) + 4c, + 2(25)
dt

dCz
Vo— = —7¢, + 3¢3 + 4c.
2 2 +3C3+4¢
d(,‘g
Vs— =4 —4c

St 1 3

dc.
V;d—;=201+63—4c4+50

Plot the concentration of the chemical in tanks 1 and 2 versus time ¢ from ¢t = 0
to 100 s. Let Vi = V5, = V5 = V; = 10 m3 and assume that the concentration in
each tank is zero at t = 0. The steady-state version of this problem was solved in
Problem 21, Problem Set 2.2.

MATLAB Functions

[xSol,ySol] = ode23(dEgs, [xStart,xStop],yStart) low-order (probably
third order) adaptive Runge-Kutta method. The function dEgs must return the
differential equations as a column vector (recall that runKut4 and runKut5 re-
quire row vectors). The range of integration is from xStart to xStop with the
initial conditions yStart (also a column vector).

[xSol,ySol] = ode45(dEgs, [xStart xStop]l,yStart) is similar to ode23,
but uses a higher-order Runge-Kutta method (probably fifth order).

These two methods, as well as all the methods described in this book, belong to
a group known as single-step methods. The name stems from the fact that the infor-
mation at a single point on the solution curve is sufficient to compute the next point.
There are also multistep methods that utilize several points on the curve to extrap-
olate the solution at the next step. These methods were popular once, but have lost
some of their luster in the past few years. Multistep methods have two shortcomings
that complicate their implementation:

e The methods are not self-starting, but must be provided with the solution at the
first few points by a single-step method.

e The integration formulas assume equally spaced steps, which makes it difficult
to change the step size.

Both of these hurdles can be overcome, but the price is complexity of the al-
gorithm that increases with sophistication of the method. The benefits of mul-
tistep methods are minimal — the best of them can outperform their single-step
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counterparts in certain problems, but these occasions are rare. MATLAB provides one
general-purpose multistep method:

[xSol,ySol] = odell3(dEgs, [xStart xStop]l,yStart)uses variable-order
Adams-Bashforth-Moulton method.

MATLAB has also several functions for solving stiff problems. These are ode15s
(this is the first method to try when a stiff problem is encountered), ode23s, ode23t,
and ode23tbh.
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Solve y" = f(x,y,¥), y@=«a, yb) =8

Introduction

In two-point boundary value problems the auxiliary conditions associated with the
differential equation, called the boundary conditions, are specified at two different
values of x. This seemingly small departure from initial value problems has a ma-
jor repercussion — it makes boundary value problems considerably more difficult to
solve. In an initial value problem, we were able to start at the point were the initial
values were given and march the solution forward as far as needed. This technique
does not work for boundary value problems, because there are not enough starting
conditions available at either end point to produce a unique solution.

One way to overcome the lack of starting conditions is to guess the missing
boundary values at one end. The resulting solution is very unlikely to satisfy bound-
ary conditions at the other end, but by inspecting the discrepancy we can estimate
what changes to make to the initial conditions before integrating again. This iterative
procedure is known as the shooting method. The name is derived from analogy with
target shooting — take a shot and observe where it hits the target, then correct the aim
and shoot again.

Another means of solving two-point boundary value problems is the finite differ-
ence method, where the differential equations are approximated by finite differences
at evenly spaced mesh points. As a consequence, a differential equation is trans-
formed into set of simultaneous algebraic equations.

The two methods have a common problem: they give rise to nonlinear sets of
equations if the differential equation is not linear. As we noted in Chapter 4, all meth-
ods of solving nonlinear equations are iterative procedures that can consume a lot of
computational resources. Thus solution of nonlinear boundary value problems is not
cheap. Another complication is that iterative methods need reasonably good starting
values in order to converge. Since there is no set formula for determining these, an
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algorithm for solving nonlinear boundary value problems requires intelligent input;
it cannot be treated as a “black box.”

Shooting Method
Second-Order Differential Equation

The simplest two-point boundary value problem is a second-order differential equa-
tion with one condition specified at x = a and another one at x = b. Here is a typical
second-order boundary value problem:

V' =fxyy) ya=a  yb=8 (8.1)

Let us now attempt to turn Egs. (8.1) into the initial value problem

V' =fxyy) ya=«o Yy@=u (8.2)

The key to success is finding the correct value of u. This could be done by trial-
and-error: guess u and solve the initial value problem by marching from x =a to
b. If the solution agrees with the prescribed boundary condition y(b) = 8, we are
done; otherwise we have to adjust u and try again. Clearly, this procedure is very
tedious.

More systematic methods become available to us if we realize that the determi-
nation of u is a root-finding problem. Because the solution of the initial value prob-
lem depends on u, the computed boundary value y(b) is a function of u; that is,

y(b) =6(w)
Hence uis a root of
rw) =0(u) —p=0 (8.3)

where r () is the boundary residual (difference between the computed and specified
boundary values). Equation (8.3) can be solved by any one of the root-finding meth-
ods discussed in Chapter 4. We reject the method of bisection because it involves too
many evaluations of 6 (z). In the Newton-Raphson method we run into the problem
of having to compute d6/du, which can be done, but not easily. That leaves Ridder’s
algorithm as our method of choice.

Here is the procedure we use in solving nonlinear boundary value problems:

1. Specify the starting values w; and w, which must bracket the root u of Eq. (8.3).

2. Apply Ridder’s method to solve Eq. (8.3) for u. Note that each iteration requires
evaluation of 6 () by solving the differential equation as an initial value problem.

3. Having determined the value of u, solve the differential equations once more and
record the results.
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If the differential equation is linear, any root-finding method will need only one
interpolation to determine u. But Ridder’s method works with three points: u;, u,
and u3, the latter being provided by bisection. This is wasteful, since linear interpo-
lation between u; and u, would also result in the correct value of u. Therefore, we
replace Ridder’s method with linear interpolation whenever the differential equation
is linear.

B linInterp

Here is the algorithm for linear interpolation:

function root = linInterp(func,xl,x2)
% Finds the zero of the linear function f(x) by straight
% line interpolation between x1 and x2.

% func = handle of function that returns f(x).

f1l = feval(func,x1); f2 = feval(func,x2);
root = x2 - f2*(x2 - x1)/(£f2 - f1);

EXAMPLE 8.1
Solve the nonlinear boundary value problem

Y +3yy =0 y0=0 y@2=1

Solution Letting y = y; and ¥’ = y», the equivalent first-order equations are

_|n|_| »
’/_[yé} [—fwz}

with the boundary conditions
J/1(0) =0 J/1(2) =1

Now comes the daunting task of estimating the trial values of y,(0) = y'(0), the
unspecified initial condition. We could always pick two numbers at random and hope
for the best. However, it is possible to reduce the element of chance with a little de-
tective work. We start by making the reasonable assumption that y is smooth (does
not wriggle) in the interval 0 < x < 2. Next, we note that y has to increase from 0 to
1, which requires y’ > 0. Since both y and y’ are positive, we conclude that y” must
be negative in order to satisfy the differential equation. Now we are in a position to
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make a rough sketch of y:

Looking at the sketch it is clear that y’(0) > 0.5, so that y’(0) = 1 and 2 appear to be
reasonable estimates for the brackets of y'(0); if they are not, Ridder’s method will
display an error message.

In the program listed below we chose the nonadaptive Runge-Kutta method
(runkut4) for integration. Note that three user-supplied, nested functions are needed
to describe the problem at hand. Apart from the function dEgs(x,y) that defines
the differential equations, we also need the functions inCond (u) to specify the ini-
tial conditions for integration, and residual (u) that provides Ridder’s method with
the boundary residual. By changing a few statements in these functions, the program
can be applied to any second-order boundary value problem. It also works for third-
order equations if integration is started at the end where two of the three boundary
conditions are specified.

function shoot2
% Shooting method for 2nd-order boundary value problem

% in Example 8.1.

xStart = 0; xStop = 2; % Range of integration.

h =0.1; % Step size.

freq = 2; % Frequency of printout.
ul = 1; u2 = 2; % Trial values of unknown

% initial condition u.

b4 xStart;
u = ridder(@residual,ul,u?);
[xSol,ySol] = runKut4(@dEgs,x,inCond(u),xStop,h);

printSol(xSol,ySol, freq)

function F = dEgs(x,y) % First-order differential
F = [y(2), -3*y(1)*y(2)]; % equations.

end

function y = inCond(u) % Initial conditions (u is
y = [0 ul; % the unknown condition).

end



www.MatlabKar.com e b (3l At - e 35901 - IS e ol

8.2 Shooting Method

function r = residual(u) % Boundary residual.

x = XStart;

[xSol,ySol] = runKut4(@dEgs,x,inCond(u),xStop,h);
r = ySol(size(ySol,1),1) - 1;

end

end

Here is the solution :

>> b 4 vl y2
0.0000e+000 0.0000e+000 1.5145e+000
2.0000e-001 2.9404e-001 1.3848e+000
4.0000e-001 5.4170e-001 1.0743e+000
6.0000e-001 7.2187e-001 7.3287e-001
8.0000e-001 8.3944e-001 4.5752e-001
1.0000e+000 9.1082e-001 2.7013e-001
1.2000e+000 9.5227e-001 1.5429e-001
1.4000e+000 9.7572e-001 8.6471e-002
1.6000e+000 9.8880e-001 4.7948e-002
1.8000e+000 9.9602e-001 2.6430e-002
2.0000e+000 1.0000e+000 1.4522e-002

Note that y’(0) = 1.5145, so that our initial guesses of 1.0 and 2.0 were on the
mark.

EXAMPLE 8.2
Numerical integration of the initial value problem

y'+4y=4x y0 =0 y0) =0

yielded y’(2) = 1.653 64. Use this information to determine the value of y’(0) that
would result in y'(2) = 0.

Solution We use linear interpolation — see Eq. (4.2)

U — U
= — 9 _—
=t = ) o )

where in our case u = y'(0) and 6(u) = y'(2). So far we are given u; = 0 and 0 () =
1.653 64. To obtain the second point, we need another solution of the initial value
problem. An obvious solution is y = x, which gives us y(0) = 0 and y'(0) = y'(2) = 1.

Thus the second point is u, = 1 and 6 (&) = 1. Linear interpolation now yields
O =u=1-m—=2 _ _ 550989
yR=a= 1-165364

Since the problem is linear, no further iterations are needed.
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EXAMPLE 8.3
Solve the third-order boundary value problem

y'=2y"+6xy y0)=2 yB =y =0
and plot y versus x.

Solution The first-order equations and the boundary conditions are

n V2
Y=|¥|= »3
V3 2y5 + 6xy;

n0) =2 »1B) =»08)=0

The program listed below is based on shoot2 in Example 8.1. Because two of the
three boundary conditions are specified at the right end, we start the integration at
x = 5 and proceed with negative i toward x = 0. Two of the three initial conditions
are prescribed as y;(5) = y»(5) = 0, whereas the third condition y3(5) is unknown.
Because the differential equation is linear, the two guesses for y3(5) (1 and w,) are
not important; we left them as they were in Example 8.1. The adaptive Runge-Kutta
method (runkut5) was chosen for the integration.

function shoot3
% Shooting method for 3rd-order boundary value

% problem in Example 8.3.

xStart = 5; xStop = 0; % Range of integration.

h =-0.1; % Step size.

freq = 2; % Frequency of printout.
ul = 1; u2 = 2; % Trial values of unknown

% initial condition u.

x = xStart;

u linInterp(@residual,ul,u2);
[xSol,ySol] = runKut5(@dEgs,x,inCond(u),xStop,h);

printSol(xSol,ySol, freq)

function F = dEgs(x,y) % lst-order differential egs.
F = [y(2), yv(3), 2*y(3) + 6*x*y(1)1];
end

function y = inCond(u) % Initial conditions.
y = [0 0 ul;

end
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function r = residual(u) % Boundary residual.

x = XStart;

[xSol,ySol] = runKut5(@dEgs,x,inCond(u),xStop,h);
r = ySol(size(ySol,1),1) - 2;

end

end

We skip the rather long printout of the solution and show just the plot:

8

Higher-Order Equations
Consider the fourth-order differential equation
=[xy, Y (8.4a)
with the boundary conditions
ya =ar  y'l@=a yb)=p  y'b) =4 (8.4b)

To solve Eq. (8.4a) with the shooting method, we need four initial conditions at x = a,
only two of which are specified. Denoting the two unknown initial values by »; and
Uy, the set of initial conditions is

v

y@) = o Y =u V(@) =« Y (@) = w (8.5)

If Eq. (8.4a) is solved with shooting method using the initial conditions in
Eq. (8.5), the computed boundary values at x = b depend on the choice of u; and
u. We express this dependence as

yb) =6:1(, ) ' () = 02(w, up) (8.6)
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The correct choice of u; and u;, yields the given boundary conditions at x = b; that s,
it satisfies the equations

01(r, ) = By 02(ty, Up) = Bo
or, using vector notation
Ou) =g (8.7)

These are simultaneous, (generally nonlinear) equations that can be solved by the
Newton-Raphson method discussed in Section 4.6. It must be pointed out again that
intelligent estimates of #; and u, are needed if the differential equation is not linear.

EXAMPLE 8.4

y

The displacement v of the simply supported beam can be obtained by solving
the boundary value problem

d*v  wy x d?v

ﬁ=ﬁz V=ﬁ=0atx=0andx=[4
where EI is the bending rigidity. Determine by numerical integration the slopes at
the two ends and the displacement at mid-span.

Solution Introducing the dimensionless variables

£ = x _ EI v
L VT wrs
the problem is transformed to
d'y d*y
— = =—>=0até =0andé =1
et § y Az § §
The equivalent first-order equations and the boundary conditions are (the prime de-
notes d/d§)
A4 V2
Vs V3
Y = , =
Y3 Ya
Ya §

710) =y300) = y1(1) =y3(1) =0

The program listed below is similar to the one in Example 8.1. With appropriate
changes in functions dEgs(x,y), inCond(u), and residual (u) the program can
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solve boundary value problems of any order greater than two. For the problem at
hand we chose the Bulirsch-Stoer algorithm to do the integration because it gives
us control over the printout (we need y precisely at mid-span). The nonadaptive
Runge-Kutta method could also be used here, but we would have to guess a suitable

step size h.

function shoot4

% Shooting method for 4th-order boundary value

% problem in Example 8.4.

xStart = 0; xStop = 1; % Range of integration.
h =0.5; % Step size.

freq = 1; % Frequency of printout.
u= [0 1]; % Trial values of u(l)

% and u(2).

X

xStart;
u = newtonRaphson2(@residual,u);

[xSol,ySol] = bulStoer(@dEgs,x,inCond(u),xStop,h);

printSol(xSol,ySol, freq)

function F = dEqgs(x,y) % Differential equations
F = [y(2) v(3) v(4) x;1;

end

function y = inCond(u) % Initial conditions; u(l)
y = [0 u(l) 0 u(2)]; % and u(2) are unknowns.
end

function r = residual(u) % Boundary residuals.

r = zeros(length(u),1);

X

xStart;

[xSol,ySol] = bulStoer(@dEgs,x,inCond(u),xStop,h);

lastRow = size(ySol,1);
r(1l )= ySol(lastRow,1);
r(2) = ySol(lastRow,3);
end

end

Here is the output:

>> X vl y2
0.0000e+000 0.0000e+000 1.9444e-002

v4

0.0000e+000 -1.6667e-001

5.0000e-001 6.5104e-003 1.2150e-003 -6.2500e-002 -4.1667e-002
1.0000e+000 -4.8369e-017 -2.2222e-002 -5.8395e-018 3.3333e-001
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Noting that
dv _dvds _(wltdy\1_wldy
dx dedx  \ EI d¢) L~ EI dt
we obtain
d I3
A1 19444 x 10310
ax|,_o EI
d I3
AUl 02222 x 10320
dx|,._; EI
wo L4
Ulx—o05L = 6.5104 x 1073 21

which agree with the analytical solution (easily obtained by direct integration of the
differential equation).

EXAMPLE 8.5
Solve the nonlinear differential equation

4
@ .3 _
yo+ prid 0
with the boundary conditions
y0) =y'0=0 y'M)=0 Yy =1
and plot y versus x.

Solution Our first task is to handle the indeterminacy of the differential equation at
the origin, where x = y = 0. The problem is resolved by applying L'Hospital’s rule:
4y3/x — 12y%y’ as x — 0. Thus the equivalent first-order equations and the bound-
ary conditions that we use in the solution are

/ Y2
N Vs
y/ = i? = y4
3 —12y?y, nearx=0
Vs

—4y3/x  otherwise

1n0)=»0=0 py1)=0 yil)=1

Because the problem is nonlinear, we need reasonable estimates for y”(0) and
¥""(0). Based on the boundary conditions y”(1) = 0 and y”’(1) = 1, the plot of y” is
likely to look something like this:

e b (55kw annd - e 3590l - I e ol
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n

<

If we are right, then y”(0) < 0 and y”'(0) > 0. Based on this rather scanty information,
we try y”(0) = —1 and y"”'(0) = 1.

The following program uses the adaptive Runge-Kutta method (runkut5) for
integration:

function shoot4nl
% Shooting method for nonlinear 4th-order boundary

% value problem in Example 8.5.

xStart = 0; xStop = 1; % Range of integration.
h =0.1; % Step size.

freq = 1; % Frequency of printout.
us=[-11]; % Trial values of u(l)

% and u(2).

X xStart;
u = newtonRaphson2(@residual,u);
[xSol,ySol] = runKut5(@dEgs,x,inCond(u),xStop,h);

printSol(xSol,ySol, freq)

function F = dEqgs(x,y) % Differential equations.
F = zeros(1l,4);
F(1) = y(2); F(2) = y(3); F(3) = y(4);

if x < 10.0e-4; F(4) = -12*y(2)*y(1)"2;
else F(4) = -4*(y(1)"3)/x;
end

end

function y
y = [0 0 u(l) u(2)]; % and u(2) are unknowns.

inCond(u) % Initial conditions; u(l)

end

function r = residual(u) % Boundary residuals.

r

zeros(length(u),1);

X

xStart;
[xSol,ySol] = runKut5(@dEgs,x,inCond(u),xStop,h);

e b (55kw annd - e 3590l - I e ol
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lastRow = size(ySol,1);
r(1l) = ySol(lastRow,3);
r(2) = ySol(lastRow,4) - 1;

end
end

The results are:
>> X vl yv2 v3 v4
0.0000e+000 0.0000e+000 0.0000e+000 -9.7607e-001 9.7131e-001
1.0000e-001 -4.7184e-003 -9.2750e-002 -8.7893e-001 9.7131e-001
3.9576e-001 -6.6403e-002 -3.1022e-001 -5.9165e-001 9.7152e-001
7.0683e-001 -1.8666e-001 -4.4722e-001 -2.8896e-001 9.7627e-001
9.8885e-001 -3.2061e-001 -4.8968e-001 -1.1144e-002 9.9848e-001
1.0000e+000 -3.2607e-001 -4.8975e-001 7.3205e-016 1.0000e+000

0.000 o—

| |
| |
| |
—0.050 [t {-mmmmm - A
|
|
|

————-——-

R 11 e e

~0.150 [----—----

~0.200 f—--------

~0.250 |----—----

~0.300 =~

- T T T/ T T T T T T T T T

-0.350 :
0.00 0.20 0.40 0.60 0.80 1.00

By good fortune, our initial estimates y”(0) = —1 and y”(0) = 1 were very close to the
final values.

PROBLEM SET 8.1

1. Numerical integration of the initial value problem
y+y-y=0 y0=0 y0=1

yielded y(1) = 0.741028. What is the value of y’(0) that would result in y(1) =1,
assuming that y(0) is unchanged?
2. The solution of the differential equation

y/// + y// + 2y/ — 6
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with the initial conditions y(0) =2, y'(0) =0, and y”(0) =1, yielded y(1) =
3.03765. When the solution was repeated with y”(0) = 0 (the other conditions
being unchanged), the result was y(1) = 2.72318. Determine the value of y”(0)
so that y(1) = 0.

3. Roughly sketch the solution of the following boundary value problems. Use the
sketch to estimate y’(0) for each problem.

@ y'=-e? y0 =1  y1)=05
b) y' =4y y0) =10 y' (1) =0
() y" = cos(xy) y(0) =0 y(1) =2

4. Using a rough sketch of the solution estimate of y(0) for the following boundary
value problems.

@ ¥y =y +xy YO =0 y1) =2
2

b) y = —}y’ -y JyOo=0 yl=2

© ¥y =-x()? yo=2 yl=1

5. Obtain a rough estimate of y”(0) for the boundary value problem

" "2

y +5y"y =0

y0)=0 YO =1 y1)=0

7

6. Obtain rough estimates of y”(0) and y”(0) for the boundary value problem

y@ +2y" +y'siny=0

y0O) =y 0=0 yO)=5 yQ=0
7. Obtain rough estimates of x(0) and y(0) for the boundary value problem
i+2x—y=0 x(00=1 x(1)=0
j+yP-2x=1  yO0=0 yI=1
8. W Solve the boundary value problem
YV'+1-020y*=0 y0 =0 yx/2)=1
9. M Solve the boundary value problem
Y2y +3y°=0  y0O =0 y@=-1
10. MW Solve the boundary value problem

y'+siny+1=0 y0) =0 y@)=0
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11. W Solve the boundary value problem
1
y”+;y/+y=0 y) =1 y(2)=0

and plot y versus x. Warning: y changes very rapidly near x = 0.
12. M Solve the boundary value problem

y'-(1-e*)y=0 y(0) =1 y(o0) =0

and plot y versus x. Hint: Replace the infinity by a finite value 8. Check your
choice of B8 by repeating the solution with 1.58. If the results change, you must
increase .

13. M Solve the boundary value problem

ua

_ l//+i/+01(/)3
Y=V gy + 01y

yn=0 y'M=0 y2=1
14. MW Solve the boundary value problem

y/// +4y// +6y/ — 10

y0) =y"0=0 yB) -y@ =5

15. B Solve the boundary value problem

"

y"'+2y"+siny=0

y=n=0 yEh=-1 yd=1
16. MW Solve the differential equation in Problem 15 with the boundary conditions
y==0 y(0=0 yd)=1

(this is a three-point boundary value problem).
17. W Solve the boundary value problem

@ _ 2

y Xy

y0 =5 y'0=0 yDH=0 y'Q)=2
18. W Solve the boundary value problem

@ _

y —2yy"

yO=y©0M=0 y@=0 y@=1
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19. B

v

0
t=0 8000 m t=10s X

A projectile of mass min free flight experiences the aerodynamic drag force F; =

cv?, where v is the velocity. The resulting equations of motion are

=k = —Suj
=" y==,"-8

V= /x2+y2

If the projectile hits a target 8 km away after a 10-s flight, determine the launch
velocity v and its angle of inclination 6. Use m = 20 kg, ¢ = 3.2 x 10~* kg/m, and
g = 9.80665 m/s.

20. m

0]
N LTI

) . |

Al

. E

The simply supported beam carries a uniform load of intensity wy and the tensile
force N. The differential equation for the vertical displacement v can be shown
to be
d'v N d*v w
dx* Eldx* EI
where EI is the bending rigidity. The boundary conditions are v = d?v/dx* = 0
EI
at x = 0 and x = L. Changing the variables to &£ = % and y = i transforms
0

the problem to the dimensionless form

dy  d?’y NL?
—aBo5 = B=—=
de*  Ude ET
d? d?
Vle—o = y =Yy y =0

halild loeg = —2
dgz £=0 =0 déz x=1

Determine the maximum displacement if (a) 8 = 1.65929 and (b) 8 = —1.65929
(INis compressive).
21. M Solve the boundary value problem

v

y'+yy"=0  y0)=y(0) =0,y (c0) =2
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and plot y(x) and y’(x). This problem arises in determining the velocity profile of
the boundary layer in incompressible flow (Blasius solution).

22.
W T | 2

—X

The differential equation that governs the displacement v of the beam shown is

dv  wy ( x>

22 _22(1+=
dx* EI +L

The boundary conditions are

d? d
v:—vzoatxzo -4

v=—=0atx=1L
dx? dx

Integrate the differential equation numerically and plot the displacement. Follow
the steps used in solving a similar problem in Example 8.4.

Finite Difference Method

X X X% X Xn-2 Xp-1 Xn  Xn+1
a b

Figure 8.1. Finite difference mesh.

In the finite difference method, we divide the range of integration (a, b) inton — 1
equal subintervals of length 7 each, as shown in Fig. 8.1. The values of the numerical
solution at the mesh points are denoted by y;,i =1, 2, ..., n; the two points outside
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(a, b) will be explained shortly. We then make two approximations:

1. The derivatives of y in the differential equation are replaced by the finite differ-
ence expressions. It is common practice to use the first central difference approx-
imations (see Chapter 5):

’ Yi+1 — Vi< 1 Yi—1 —ZJ’i+J’i+1
Y= 5 V= g etc. (8.8)

2. The differential equation is enforced only at the mesh points.

As a result, the differential equations are replaced by n simultaneous algebraic
equations, the unknowns being y;, i = 1, 2, ..., n. If the differential equation is non-
linear, the algebraic equations will also be nonlinear and must be solved by the
Newton-Raphson method.

Since the truncation error in a first central difference approximation is O(h?),
the finite difference method is not as accurate as the shooting method - recall that
the Runge-Kutta method has a truncation error of O(h°). Therefore, the convergence
criterion in the Newton—-Raphson method should not be too severe.

Second-Order Differential Equation

Consider the second-order differential equation
Y=y y)
with the boundary conditions

y@a) =o or y@=«a
yb)=p or y(b) =8

Approximating the derivatives at the mesh points by finite differences, the prob-

lem becomes
Yic1 —ZhJ;l-erm :f<xi; Vi J’i+12_hJ’i—1>, i—12 ...n 8.9)
y1=a or J’ZZ—hJ’O = (8.10a)
yn=p or 7y"“2_hy”’1 =B (8.10b)

Note the presence of y; and y,;, which are associated with points outside solution
domain (a, b). This “spillover” can be eliminated by using the boundary conditions.
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But before we do that, let us rewrite Egs. (8.9) as:

YO—2y1+yz—h2f<x1,y1, yzz_hy(’):O ()

J/i—l_ZJ/i+yi+1—h2f<Xj,yi. yl“%ﬁ) =0, i=2,3,...,n—-1 (b)

Vo1 = 2¥n+ Ynp1 — B f <xnv Yis m%ﬁ) =0 (0

The boundary conditions on y are easily dealt with: Eq. (a) is simply replaced by
1 — a = 0 and Eq. (c) is replaced by y,, — 8 = 0. If y’ are prescribed, we obtain from
Egs. (8.10) yp = y» — 2ha and Yp41 = yu—1 + 2hB, which are then substituted into Egs.
(a) and (c), respectively. Hence we finish up with n equations in the unknowns y;,
i=12,...,n

N—a=0 ify(“):"‘} ©8.11a)

29 +2y — R fx, y, @) —2ha =0 ify'(a) =«

yi—l—2}’i+J’i+1—h2f(xi»J/i»%>=0 i=23,...,n—1  (811b)

Yo—B =0 if y(b) =ﬂ} G110

2Yn1 = 2Yn — W2 f (Xn, Yn, B) + 208 =0 if y'(b) = B

EXAMPLE 8.6
Write out Egs. (8.11) for the following linear boundary value problem using n = 11:

y'=—4y+4x  y0)=0 Y@/2)=0
Solve these equations with a computer program.

Solution In this case « = 0 (applicable to y), 8 = 0 (applicable to y’) and f(x, y, y') =
—4y + 4x. Hence Eqgs. (8.11) are

n=>0
Vi1 —2Yi+ Vi — W (—4yi +4x) =0, i=2,3,...,n—1
2y10 — 2y — K2 (—4yn +4x11) = 0

or, using matrix notation

1 0 n 0
1 —2+4R* 1 2 4h2x,
1 —2+4+4K? 1 Y10 4h?x19

2 —24+4n? yi 4h2x11
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Note that the coefficient matrix is tridiagonal, so that the equations can be solved
efficiently by the functions LUdec3 and LUso013 described in Section 2.4. Recalling
that these functions store the diagonals of the coefficient matrix in vectors ¢, d, and
e, we arrive at the following program:

function fDiff6
% Finite difference method for the second-order,

% linear boundary value problem in Example 8.6.

xStart = 0; xStop = pi/2; % Range of integration.
n = 11; % Number of mesh points.
freq = 1; % Printout frequency.

h = (xStop - xStart)/(n-1);

x = linspace(xStart,xStop,n)’;
[c,d,e,b] = fDiffEqs(x,h,n);
[c,d,e] = LUdec3(c,d,e);
printSol(x,LUsol3(c,d,e,b),freq)

function [c,d,e,b] = fDiffEqs(x,h,n)

% Sets up the tridiagonal coefficient matrix and the
% constant vector of the finite difference equations.
h2 = h*h;

d = ones(n,1)*(-2 + 4*h2);
c = ones(n-1,1);

e = ones(n-1,1);

b = ones(n,1)*4*h2.*x;

d(1l) = 1; e(l) = 0; b(1l) = 0;c(n-1) = 2;

The solution is

>> b4 vl

0.0000e+000 0.0000e+000
1.5708e-001 3.1417e-001
3.1416e-001 6.1284e-001
4.7124e-001 8.8203e-001
6.2832e-001 1.1107e+000
7.8540e-001 1.2917e+000
9.4248e-001 1.4228e+000
1.0996e+000 1.5064e+000
1.2566e+000 1.5500e+000
1.4137e+000 1.5645e+000
1.5708e+000 1.5642e+000
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The exact solution of the problem is
¥y =Xx—sin2x

which yields y(7/2) = n/2 = 1.57080. Thus the error in the numerical solution is
about 0.4%. More accurate results can be achieved by increasing n. For example, with
n = 101, we would get y(rr /2) = 1.57073, which is in error by only 0.0002%.

EXAMPLE 8.7
Solve the boundary value problem

"__

y'==3yy y0=0 y2)=1

with the finite difference method. (This problem was solved in Example 8.1 by the
shooting method.) Use n = 11 and compare the results to the solution in Example 8.1.

Solution As the problem is nonlinear, Egs. (8.11) must be solved by the Newton—
Raphson method. The program listed below can be used as a model for other second-
order boundary value problems. The subfunction residual (y) returns the residu-
als of the finite difference equations, which are the left-hand sides of Egs. (8.11). The
differential equation y” = f(x, y, ') is defined in the subfunction y2Prime. In this
problem, we chose for the initial solution y; = 0.5x;, which corresponds to the dashed
straight line shown in the rough plot of y in Example 8.1. Note that we relaxed the
convergence criterion in the Newton-Raphson method to 1.0 x 105, which is more
in line with the truncation error in the finite difference method.

function fDiff7
% Finite difference method for the second-order,

% nonlinear boundary value problem in Example 8.7.

xStart = 0; xStop = 2; % Range of integration.
n = 11; % Number of mesh points.
freq = 1; % Printout frequency.

x = linspace(xStart,xStop,n)’;

y = 0.5%x; % Starting values of y.

h = (xStop - xStart)/(n-1);
v newtonRaphson2(@residual,y,1.0e-5);
printSol(x,y,freq)

function r = residual(y)
% Residuals of finite difference equations (left-hand
% sides of Eqgs (8.11).
r = zeros(n,1l);
r(l) = y(1); r(n) = y(n) - 1;
for i = 2:n-1
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r(i) = y(i-1) - 2*y(i) + y(i+1l)...
- h*h*y2Prime(x(i),y(i), (y(i+1l) - y(i-1)>/(2*h));
end
end

function F = y2Prime(x,y,yPrime)
% Second-order differential equation F =y
F = -3*y*yPrime;

end

end

Here is the output from the program:

>> X vl
0.0000e+000 0.0000e+000
2.0000e-001 3.0240e-001
4.0000e-001 5.5450e-001
6.0000e-001 7.3469e-001
8.0000e-001 8.4979e-001
1.0000e+000 9.1813e-001
1.2000e+000 9.5695e-001
1.4000e+000 9.7846e-001
1.6000e+000 9.9020e-001
1.8000e+000 9.9657e-001
2.0000e+000 1.0000e+000

The maximum discrepancy between the above solution and the one in Example
8.1 occurs at x = 0.6. In Example 8.1, we have y(0.6) = 0.072187, so that the difference
between the solutions is

0.073469 — 0.072187
0.072187

As the shooting method used in Example 8.1 is considerably more accurate than the
finite difference method, the discrepancy can be attributed to truncation error in the
finite difference solution. This error would be acceptable in many engineering prob-
lems. Again, accuracy can be increased by using a finer mesh. With m = 101, we can

x 100% ~ 1.8%

reduce the error to 0.07%, but we must question whether the tenfold increase in com-
putation time is really worth the extra precision.
Fourth-Order Differential Equation

For the sake of brevity we limit our discussion to the special case where y" and y” do
not appear explicitly in the differential equation; that is, we consider

¥ = flx, 3,y
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We assume that two boundary conditions are prescribed at each end of the solution

domain (a, b). Problems of this form are commonly encountered in beam theory.
Again, we divide the solution domain into 7 intervals of length & each. Replacing

the derivatives of y by finite differences at the mesh points, we get the finite difference

equations
Yiee —4Yi-1 + 6y —4yin1 + Vi Yic1—2yi+ i
-2 i—1 h4z i+1 i+2 _ f X _Vir % (8.12)
wherei =1, 2, ..., n. It is more revealing to write these equations as
-2y +
Vo1 —4Yo+ 6y —4yo + y3 — B (xl, ” W) —0 (8.13a)
— 2y +
Yo—4y1+6y2 — 4ys+ ya — H'f (xz, Y2 W) —0 (8.13b)
—2y3 +
V=AY +6ys — 4y +ys — h'f (xs, s W) —0 (8.13¢)
o — 2Vn_1 +
Yn—3 —4Yn—2 +6Yn_1 —4Yn + Yn41 — h4f <xn_1, V-1, Yn-2 ]i;n 1 )n =0
(8.13d)
1= 2Yn+
Y2 —4Yn-1+6Yy — 4Yni1 + Ynp2 — B f (xm Yn» Yot ]:ijn _Vn+1> =0 (8.13¢)

We now see that there are four unknowns that lie outside the solution domain: y_;,
Y0, ¥n+1, and y,1». This “spillover” can be eliminated by applying the boundary con-
ditions, a task that is facilitated by Table 8.1.

Boundary conditions | Equivalent finite difference expression
ya=oa | n=«
va =a| yo=y—2ha
V'@ =a | yo=2y —y + ha
y'@) =a | y-1 =2y — 2y, + y3 — 2h3a
yb)y =8| y.=8
Y'B) =8B | Yus1 = Yn1+2h8
y”(b) =B Yny1 = Zyn —Vn-1+ hzﬁ
yw(b) =B | Ynre=2Vnt1 —2Yn-1+Yn2+ 2hS/S

Table 8.1
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The astute observer may notice that some combinations of boundary conditions
will not work in eliminating the “spillover.” One such combination is clearly y(a) = «;
and y”(a) = a,. The other one is y'(a) = «; and y”"(a) = «». In the context of beam
theory, this makes sense: we can impose either a displacement y or a shear force
EIy" atapoint, butitisimpossible to enforce both of them simultaneously. Similarly,
it makes no physical sense to prescribe both the slope y’ the bending moment EIy”at
the same point.

EXAMPLE 8.8

|
|
1

4

The uniform beam of length L and bending rigidity E is attached to rigid sup-
ports at both ends. The beam carries a concentrated load P at its mid-span. If we
utilize symmetry and model only the left half of the beam, the displacement v can be
obtained by solving the boundary value problem

d*v
El— =0
dx*
d d d®
vheo=0 I _—o Y =0 El— —_P)2
dx|,_o ax|,_r ax3|y_p,

Use the finite difference method to determine the displacement and the bending mo-
ment M = —EI d?v/dx? at the mid-span (the exact values are v = PL3/(192E1I) and
M= PL/8).

Solution By introducing the dimensionless variables

£ = x _ EI )
1 VTP
the problem becomes
d'y
22 0
dg*
d da a3 1
Veo=0 2| =0 2| = ar
‘i: £=0 ‘i: £=1/2 dé £=1/2 2

We now proceed to writing Eqgs. (8.13) taking into account the boundary condi-
tions. Referring to Table 8.1, the finite difference expressions of the boundary condi-
tions at the left end are y; = 0 and yy, = y». Hence Eqgs. (8.13a) and (8.13b) become

n=0 (@)
Ay +7y2 —4ys + Y2 =10 (b)
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Equation (8.13c) is
Yi—4y2+6ys —4ys+y5 =0 (©
At the right end the boundary conditions are equivalent to y,+; = y,—1 and
Yni2 = 2Yni1 = 2¥n1 + Vo2 + 2h*(=1/2)
Substitution into Egs. (8.13d) and (8.13e) yields
Vn-3 = 4Yn-2+7Yn-1 —4yn =0 (d)
2Yn-2 — 8Yn-1 +6yn = I’ (e)

The coefficient matrix of Egs. (a)—(e) can be made symmetric by dividing Eq. (e) by 2.
The result is

1 0 0 N 0
0 7 -4 1 Vo 0
0 -4 6 —4 1 V3 0
1 -4 6 —4 1|| ypo 0
1 -4 7 —4 Yn-1 0

L 1 -4 3|y | L05K]

The above system of equations can be solved with the decomposition and back
substitution routines in the functions LUdec5 and LUsol5 — see Section 2.4. Recall
that these functions work with the vectors d, e, and f that form the diagonals of upper
half of the coefficient matrix. The program that sets up solves the equations is

function fDiff8
% Finite difference method for the 4th-order,
% linear boundary value problem in Example 8.8.

xStart = 0; xStop = 0.5; % Range of integration.
n = 21; % Number of mesh points.
freq = 1; % Printout frequency.

h = (xStop - xStart)/(n-1);

x = linspace(xStart,xStop,n)’;

[d,e,f,b] = fDiffEqgs(x,h,n);

[d,e,f] = LUdec5(d,e,f);
printSol(x,LUsol5(d,e,f,b),freq)

function [d,e,f,b] = fDiffEqs(x,h,n)
% Sets up the pentadiagonal coefficient matrix and the
% constant vector of the finite difference equations.

d = ones(n,1)*6;
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e = ones(n-1,1)*(-4);
f = ones(n-2,1);

b = zeros(n,1);
d(1) = 1; d(2)
e(1l) = 0; £(1)

end

7; d(n-1) = 7; d(n) = 3;
0; b(n) = 0.5*h"3;

end
The last two lines of the output are

>> X vl
4.7500e-001 5.1953e-003
5.0000e-001 5.2344e-003

Thus at the mid-span we have

V| = —3 | =5.2344 x 10 3—3
— = — = . X
x=0.5L EI Yle=05 EI

d*v _P* (1 a  PLYm1—2Ym+ Ymn
dx?|, o5, EI \L? dg*|._y5 EI h?
_ PL(5.1953 — 2(5.2344) +5.1953) x 1073
~ EI 0.0252
PL
= —-0.12512—
EI
dz
Mlx=05. = —EI —Z =0.12512 PL
dx?|._os

In comparison, the exact solution yields

3

PL
—o5L = 5.2083 x 1073 —-
Vlx=05L X i

M|x—05r = =0.12500 PL
PROBLEM SET 8.2

Problems 1-5 Use first central difference approximations to transform the bound-
ary value problem shown into simultaneous equations Ay = b.

Problems 6-10 Solve the given boundary value problem with the finite difference
method using n = 21.

"=2+x)y, y0) =0, y@Q) =5
"=y+x% y0) =0 yQ1) =1
=e ¥y, y0)=1, yd)=0.

/"

1.y
2.y
3.y
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YW=y -y yO0 =0, yO =1 y)=0, y1)=-L

LY =-9y+x, y0)=y"0) =0 y@L=y"1)=0.

. By’ =xy, y)=15 y(2)=3.

. By +2y +y=0, y(0) =0, y(l)=1.Exactsolutionisy = xe!~*.

.l xX?’y"+xy'+y=0, y(1)=0, y(2)=0.638961. Exact solution is
y = sin(In x).

9. By’ =y?siny, y'(0)=0, y() =1

10. m y"+2y@2xy' +y)=0, y0)=1/2, y'(1)=-2/9. Exact solution is y =

0 N O O

2+ x>~
11. &
Wo
lo [T lo oy
-E‘ L/4 L/2 \,1 L/4ECIL
%

The simply supported beam consists of three segments with the moments of in-
ertia Iy and I; as shown. A uniformly distributed load of intensity w, acts over
the middle segment. Modeling only the left half of the beam, the differential
equation

dzv_ M
dx2  EI

for the displacement v can be shown to be

L
in0d <x < —

&
W~

d*v wy L?
dx2 = 4EL, 2
X 0 I | x x 1 . L L
—|==2=-- in—<x< -
L | L L 4 4 2
Introducing the dimensionless variables
f . X _ EI[) v _ Il
T VT wmit A
the differential equation becomes
L ino <t <1
_ <&< -
4 4

d’y

dg? 1 ) 1\*|. 1 1
_E & — <$—Z> 1n1<§<§

with the boundary conditions
d%y

dy d®y
Ay - -°

£=0 a CTS £=1/2 a 753 £=1/2 a

Vle—o =
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Use the finite difference method to determine the maximum displacement of the
beam using n = 21 and y = 1.5 and compare it with the exact solution

_ 61 LU()L4
" 9216 EI

Vmax

12. &

b= =}
X
L |

The simply supported, tapered beam has a circular cross section. A couple of
magnitude M, is applied to the left end of the beam. The differential equation
for the displacement v is

d?v M M01-x/L)

dx2~  EI  Ely(d/dy)*

where
_ d] X ﬂdg
i-a (3] e
Substituting
T L T MyL? T dy

the differential equation becomes

dy  1-¢

dg? ~ [1+06-Dg)’
with the boundary conditions

d’y d’y

J/|g:o = = = .V|g=1 = =
dx?|,_, dx? |,

Solve the problem with the finite difference method with § = 1.5 and n = 21; plot
y versus &. The exact solution is

_ B+25E-38)8 1
B +sE—£YH 38

13. M Solve Example 8.4 by the finite difference method with n = 21. Hint: Compute
end slopes from second noncentral differences in Tables 5.3a and 5.3b.

14. W Solve Problem 20 in Problem Set 8.1 with the finite difference method. Use
n=21.
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15. |

The simply supported beam of length L is resting on an elastic foundation of
stiffness k N/m?. The displacement v of the beam due to the uniformly dis-
tributed load of intensity wy N/m is given by the solution of the boundary value

problem

d*v d*y d*v

Elw‘i"kv:wo, U|x:0: ﬁx:(): V|x:L: ﬁx:L:

The nondimensional form of the problem is

d*y d*y d*y

—_— = 1, = — = = =

de* try Vle=o dx?|,_, le=1 dx?|,_,
where

EI kL

X

T YT wr’ VT Er
Solve this problem by the finite difference method with y = 10° and plot y
versus &.

16. W Solve Problem 15 if the ends of the beam are free and the load is confined to
the middle half of the beam. Consider only the left half of the beam, in which
case the nondimensional form of the problem is

d'y oy 0in0<&<1/4

dgt " l1linl/4 <& <1)2
d’y d’y dy d’y
dg®lesy  dE |y dEleyp  dAED L)

17. W The general form of a linear, second-order boundary value problem is
Vi=r(x)+s@y+ )y
y@)=aory@ =a

yb) = pory'(b)=p

Write a program that solves this problem with the finite difference method for
any user-specified r(x), s(x), and ¢(x). Test the program by solving Problem 8.
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18. m

200°C

o

The thick cylinder conveys a fluid with a temperature of 0°C. At the same time
the cylinder is immersed in a bath that is kept at 200°C. The differential equation
and the boundary conditions that govern steady-state heat conduction in the
cylinder are

&T _ 1dT

=g Theap=0 Ty =200°C

where T is the temperature. Determine the temperature profile through the
thickness of the cylinder with the finite difference method and compare it with
the analytical solution

T = 200 <1 _ lnr/a>

In0.5

MATLAB Functions

MATLAB has only the following function for solution of boundary value problems:

sol = bvp4c(@dEgs,@residual,solinit) uses a high-order finite difference
method with an adaptive mesh. The output sol is a structure (a MATLAB data
type) created by bvp4c. The first two input arguments are handles to the fol-
lowing user-supplied functions:

F = dEgs(x,y) specifies the first-order differential equations F(x,y) =y. Both F
and y are column vectors.
r = residual(ya,yb) specifies all the applicable boundary residuals y;(a) —

«; and y;(b) — B; in a column vector r, where «; and g; are the prescribed
boundary values.

The third input argument solinit is a structure that contains the x and y-values
at the nodes of the initial mesh. This structure can be generated with MATLAB'’s func-
tion bvpinit:
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solinit = bvpinit(xinit,@yguess) where xinit is a vector containing the
x-coordinates of the nodes; yguess(x) is a user-supplied function that returns
a column vector containing the trial solutions for the components of y.

The numerical solution at user-defined mesh points can be extracted from the
structure sol with the MATLAB function deval:

y = deval(sol,xmesh) where xmesh is an array containing the x-coordinates of
the mesh points. The function returns a matrix with the ith row containing the
values of y; at the mesh points.

The following program illustrates the use of the above functions in solving Exam-
ple 8.1:

function shoot2_matlab
% Solution of Example 8.1 with MATLAB’s function bvp4c.

xinit = linspace(0,2,11)’;

solinit = bvpinit(xinit,@yguess);

sol = bvp4c(@dEgs,@residual,solinit);
y = deval(sol,xinit)’;

printSol(xinit,y,1) % This is our own func.

function F = dEgs(x,Vy) % Differential egs.
F = [y(2); -3*y(L)*y(2)1;

function r = residual(ya,yb) % Boundary residuals.
r = [ya(l); yb(1) - 11;

function yinit = yguess(x) % Initial guesses for
yinit = [0.5*x; 0.5]; % yl and y2.
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Symmetric Matrix Eigenvalue Problems

Find A for which nontrivial solutions of Ax =Ax exist

Introduction

The standard form of the matrix eigenvalue problem is
Ax = Ax 9.1)

where A is a given n x n matrix. The problem is to find the scalar A and the vector x.
Rewriting Eq. (9.1) in the form

A-ADx=0 9.2)

it becomes apparent that we are dealing with a system of n homogeneous equations.
An obvious solution is the trivial one x = 0. A nontrivial solution can exist only if the
determinant of the coefficient matrix vanishes; that is, if

A — ATl =0 (9.3)

Expansion of the determinant leads to the polynomial equation known as the char-
acteristic equation

alt a4+ a4 an =0

which has theroots A;,i =1, 2, ..., n, called the eigenvalues of the matrix A. The so-
lutions x; of (A — 1;I) x = 0 are known as the eigenvectors.
As an example, consider the matrix

1 -1 0
A=|-1 2 -1 (@)
0 -1 1
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The characteristic equation is

A-=|-1 2-2 -1 |=-32+42-23=0 (b)

The roots of this equation are 1; = 0, A, = 1, A3 = 3. To compute the eigenvector cor-
responding the A3, we substitute » = 13 into Eq. (9.2), obtaining

-2 -1 0 X1
()

|
—
|
—
|
—
&
Il
o o o

0o -1 -2 X3

We know that the determinant of the coefficient matrix is zero, so that the equations
are not linearly independent. Therefore, we can assign an arbitrary value to any one
component of x and use two of the equations to compute the other two components.
Choosing x; = 1, the first equation of Eq. (c) yields x, = —2 and from the third equa-
tion we get x3 = 1. Thus the eigenvector associated with A3 is

1
X3 = -2
1
The other two eigenvectors
1 1
Xo = 0 X] = 1
-1 1

can be obtained in the same manner.
It is sometimes convenient to display the eigenvectors as columns of a matrix X.
For the problem at hand, this matrix is

1 1 1
X:[x1x2x3]: 1 0 -2
1 -1 1

It is clear from the above example that the magnitude of an eigenvector is in-
determinate; only its direction can be computed from Eq. (9.2). It is customary to
normalize the eigenvectors by assigning a unit magnitude to each vector. Thus the
normalized eigenvectors in our example are

V3 1v2 16
X=|1/V3 0 —2/V6
1/V/3 -1/vV2  1/V6

Throughout this chapter, we assume that the eigenvectors are normalized.
Here are some useful properties of eigenvalues and eigenvectors, given without
proof:



www.MatlabKar.com e b (3l At - e 35901 - IS e ol

9.2 Jacobi Method

¢ All the eigenvalues of a symmetric matrix are real.

¢ All eigenvalues of a symmetric, positive-definite matrix are real and positive.
e The eigenvectors of a symmetric matrix are orthonormal; that is, XX = L

o If the eigenvalues of A are 1;, then the eigenvalues of A~! are ;.

Eigenvalue problems that originate from physical problems often end up with
a symmetric A. This is fortunate, because symmetric eigenvalue problems are much
easier to solve than their nonsymmetric counterparts. In this chapter, we largely re-
strict our discussion to eigenvalues and eigenvectors of symmetric matrices.

Common sources of eigenvalue problems are the analysis of vibrations and sta-
bility. These problems often have the following characteristics:

e The matrices are large and sparse (e.g., have a banded structure).
e We need to know only the eigenvalues; if eigenvectors are required, only a few of
them are of interest.

A useful eigenvalue solver must be able to utilize these characteristics to mini-
mize the computations. In particular, it should be flexible enough to compute only
what we need and no more.

Jacobi Method
Similarity Transformation and Diagonalization
Consider the standard matrix eigenvalue problem
Ax = Ax 9.4)

where A is symmetric. Let us now apply the transformation

x = Px* (9.5)

where P is a nonsingular matrix. Substituting Eq. (9.5) into Eq. (9.4) and premultiply-
ing each side by P!, we get

P !APx* = AP 'Px*
or
A'X* = Ax* 9.6)

where A* = P~!AP. Because A was untouched by the transformation, the eigenval-
ues of A are also the eigenvalues of A*. Matrices that have the same eigenvalues are
deemed to be similar, and the transformation between them is called a similarity
transformation.



www.MatlabKar.com e b (3l 4t - e 35901 - IS e ol

Symmetric Matrix Eigenvalue Problems

Similarity transformations are frequently used to change an eigenvalue problem
to a form that is easier to solve. Suppose that we managed by some means to find a P
that diagonalizes A*, so that Egs. (9.6) are

A=A 0 .. 0 X 0
0 A —i .- 0 X 0
0 0 - AL —illx 0

The solution of these equations is

M=AL =A - =A%, 9.7)
1 0
1 0
xl = X; = . x:; =
0 0 1

or
X* = [x]*x; x’;l] =1
According to Eq. (9.5) the eigenvector matrix of A is
X=PX*'=PI=P (9.8)

Hence the transformation matrix P is the eigenvector matrix of A and the eigenvalues
of A are the diagonal terms of A*.

Jacobi Rotation

A special transformation is the plane rotation

x = Rx* (9.9)
where
k ¢
1 0 0 00 0 0 O
01 0 00O0O0 O
00 ¢c 00 s 0O|FK
R_|00 0 10000 ©.10)
00 0 01000
00 —s 00 c O Of¢
00 0 0O0O0T1 O
00 0 0000 1
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is called the Jacobi rotation matrix. Note that R is an identity matrix modified by the
terms ¢ = cosf and s = sin§ appearing at the intersections of columns/rows k and
¢, where 6 is the rotation angle. The rotation matrix has the useful property of being
orthogonal, or unitary, meaning that

R !=RT (9.11)

One consequence of orthogonality is that the transformation in Eq. (9.9) has the es-
sential characteristic of a rotation: it preserves the magnitude of the vector; that is,
x| = x|

The similarity transformation corresponding to the plane rotation in Eq. (9.9) is

A* =R 'AR = RTAR (9.12)

The matrix A* not only has the same eigenvalues as the original matrix A, but due to
orthogonality of Rit is also symmetric. The transformation in Eq. (9.12) changes only
the rows/columns k and ¢ of A. The formulas for these changes are

Al = Ak + 57 Ay — 2csAke

A}, = Ay + S Ak + 2¢sAxe

Afy = Af = (* — s Age + cs(Ag — Aw) (9.13)
AL = AL = A —SAu, i#k (%L

A=Al =cAy+sA, itk i+l

Jacobi Diagonalization

The angle 6 in the Jacobi rotation matrix can be chosen so that A}, = A}, = 0. This
suggests the following idea: Why not diagonalize A by looping through all the off-
diagonal terms and eliminate them one-by-one? This is exactly what Jacobi diago-
nalization does. However, there is a major snag — the transformation that annihilates
an off-diagonal term also undoes some of the previously created zeros. Fortunately, it
turns out that the off-diagonal terms that reappear will be smaller than before. Thus
Jacobi method is an iterative procedure that repeatedly applies Jacobi rotations until
the off-diagonal terms have virtually vanished. The final transformation matrix P is
the accumulation of individual rotations R;:

P=R;RR;- - (9.14)

The columns of P finish up being the eigenvectors of A and the diagonal elements of
A* = PTAP become the eigenvectors.

Let us now look at details of a Jacobi rotation. From Eq. (9.13), we see that A7, = 0
if

(¢® — $*)Age + cs(Agx — Ag) =0 (@
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Using the trigonometric identities ¢? — s? = cos 26 and ¢s = (1/2) sin 26, Eq. (a) yields
2Ake
tan20 = ————— (b)
Ak — Aue
which could be solved for 6, followed by computation of c = cos 6 and s = sin 8. How-
ever, the procedure described below leads to better algorithm.”!
Introducing the notation

Agk — Age

=cot20 = ———— 9.15
¢ 2A 0, (9.15)
and utilizing the trigonometric identity
2t
tan26 = ———
(1—-12)

where t = tan 6, Eq. (b) can be written as

2420t —1=0

t=—¢+\¢*+1

It has been found that the root |f| < 1, which corresponds to |0| < 45°, leads to the
more stable transformation. Therefore, we choose the plus sign if ¢ > 0 and the mi-
nus sign if ¢ < 0, which is equivalent to using

t = sgn(¢) (— 6]+ /9% + 1)

To forestall excessive roundoff error if ¢ is large, we multiply both sides of the equa-
tion by |¢| + V¢ + 1 and solve for t, which yields
f— sgn(¢)
16l + V¢* +1

In the case of very large ¢, we should replace Eq. (9.16a) by the approximation

[ = i

2¢

to prevent overflow in the computation of $?. Having computed ¢, we can use the
trigonometric relationship tan 6 = sin6/ cos9 = +/1 — cos? 6/ cos 6 to obtain

1

Vi+e

We now improve the computational properties of the transformation formulas
in Egs. (9.13). Solving Eq. (a) for A, we obtain

which has the roots

(9.16a)

(9.16b)

C =

s=1Ic 9.17)

¢ —s?

Ay = Agk + Ake (c)

21 The procedure is adapted from Press, W.H. et al., Numerical Recipes in Fortran, 2nd ed., 1992,
Cambridge University Press, New York.
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Replacing all occurrences of A, by Eq. (c) and simplifying, the transformation for-
mulas in Egs. (9.13) can be written as
A = Ak — tAke
Ay = A + tAke
Ape = A =0 9.18)
A=A =An—sAu+ 1AW, i#k i#¢

A=A}, =Au+sAp —tAy), i#k [#L¢

where

S
1+c¢

T = (9.19)
The introduction of = allowed us to express each formula in the form (original value)
+ (change), which is helpful in reducing the roundoff error.

At the start of Jacobi’s diagonalization process the transformation matrix P is ini-
tialized to the identity matrix. Each Jacobi rotation changes this matrix from P to
P* = PR. The corresponding changes in the elements of P can be shown to be (only
the columns k and ¢ are affected)

P = Py — s(Py + 1 Py) (9.20)

Py = Py +s(Px —tPy)

We still have to decide the order in which the off-diagonal elements of A are to
be eliminated. Jacobi’s original idea was to attack the largest element since this re-
sults in fewest number of rotations. The problem here is that A has to be searched
for the largest element after every rotation, which is a time-consuming process. If the
matrix is large, it is faster to sweep through it by rows or columns and annihilate ev-
ery element above some threshold value. In the next sweep the threshold is lowered
and the process repeated. We adopt Jacobi’s original scheme because of its simpler
implementation.

In summary, Jacobi’s diagonalization procedure, which uses only the upper half
of the matrix, is:

Find the largest (absolute value) off-diagonal element Ay, in the upper half of A.
Compute ¢, t, c and s from Egs.(9.15)—(9.17).

Compute 7 from Eq. (9.19)

Modify the elements in the upper half of A according to Egs. (9.18).

Update the transformation matrix P using Egs. (9.20).

Repeat steps 1-5 until the |Ay¢| < &, where ¢ is the error tolerance.

S
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The function jacobi computes all eigenvalues A; and eigenvectors x; of a symmet-
ric, n x nmatrix A by Jacobi method. The algorithm works exclusively with the upper
triangular part of A, which is destroyed in the process. The principal diagonal of A
is replaced by the eigenvalues, and the columns of the transformation matrix P be-

come the normalized eigenvectors.

function [eVals,eVecs] = jacobi(A,tol)
% Jacobi method for computing eigenvalues and
% eigenvectors of a symmetric matrix A.
% USAGE: [eVals,eVecs] = jacobi(A,tol)

% tol = error tolerance (default is 1.0e-9).

if nargin < 2; tol = 1.0e-9; end

n = size(A,1);

maxRot = 5*(n"2); % Limit number of rotations
P = eye(n); % Initialize rotation matrix
for i = 1l:maxRot % Begin Jacobi rotations

[Amax,k,L] = maxElem(A);
if Amax < tol;
eVals = diag(A); eVecs = P;
return
end
[A,P] = rotate(A,P,k,L);
end

error(’Too many Jacobi rotations’)

function [Amax,k,L] = maxElem(A)
% Finds Amax = A(k,L) (largest off-diag. elem. of A).
n = size(A,1);
Amax = 0;
for i = 1:n-1
for j = i+l:n
if abs(A(i,Jj)) >= Amax
Amax = abs(A(i,Jj));
k=1i; L = j;
end
end

end

function [A,P] = rotate(A,P,k,L)
% Zeros A(k,L) by a Jacobi rotation and updates
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% transformation matrix P.

n = size(A,1);

diff = A(L,L) - A(k,k);

if abs(A(k,L)) < abs(diff)*1.0e-36
t = A(k,L);

else
phi = diff/(2*A(k,L));
t = 1/(abs(phi) + sqrt(phi®2 + 1));
if phi < 0; t = -t; end;

end

c = 1/sqrt(t”2 + 1); s = t*c;

tau = s/(1 + c);

temp = ACk,L); A(k,L) = 0;

A(k,k) = A(k,k) - t*temp;

A(L,L) = A(L,L) + t*temp;

for i = 1:k-1 % For i < k
temp = A(i,k);
A(i,k) = temp -s*(A(i,L) + tau*temp);
A(i,L) = A(4i,L) + s*(temp - tau*A(i,L));

end

for i = k+1:L-1 % For k < i < L
temp = A(k,1);
A(k,i) = temp - s*(A(4i,L) + tau*A(k,i));
A(i,L) = A(i,L) + s*(temp - tau*A(i,L));

end

for i = L+1l:n % For i > L
temp = A(k,1i);
A(k,i) = temp - s*(A(L,i) + tau*temp);
A(L,i) = A(L,i) + s*(temp - tau*A(L,i));

end

for i = 1:n % Update transformation matrix
temp = P(i,k);
P(i,k) = temp - s*(P(i,L) + tau*P(i,k));
P(i,L) = P(i,L) + s*(temp - tau*P(i,L));

end

B sortEigen

The eigenvalues/eigenvectors returned by jacobi are not ordered. The function
listed below can be used to sort the results into ascending order of eigenvalues.

function [eVals,eVecs] = sortEigen(eVals,eVecs)

% Sorts eigenvalues & eigenvectors into ascending
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% order of eigenvalues.
% USAGE: [eVals,eVecs] = sortEigen(eVals,eVecs)

n = length(eVals);
for i = 1:n-1
index = i; val = eVals(i);
for j = i+l:n
if eVals(j) < val
index = j; val = eVals(j);

end
end
if index "= i
eVals = swapRows(eVals,i,index);
eVecs = swapCols(eVecs,i,index);
end

end

Transformation to Standard Form
Physical problems often give rise to eigenvalue problems of the form
Ax = ABx (9.21)

where A and B are symmetric n x n matrices. We assume that B is also positive defi-
nite. Such problems must be transformed into the standard form before they can be
solved by Jacobi diagonalization.

As B is symmetric and positive definite, we can apply Choleski’s decomposition
B = LL”, where Lis lower-triangular matrix (see Section 2.3). Then we introduce the
transformation

x= LNz (9.22)

Substituting into Eq. (9.21), we get
AL N z=2LL" @)z
Premultiplying both sides by L~! results in
LA Y z=AL'LL' @™z
Noting that L™'L = LT(L™!)T = I, the last equation reduces to the standard form
Hz = )z (9.23)

where

H=L'AL™HT (9.24)
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An important property of this transformation is that it does not destroy the symmetry
of the matrix; that is, symmetric A results in symmetric H.

Here is the general procedure for solving eigenvalue problems of the form Ax =
ABx:

1. Use Choleski's decomposition B = LL” to compute L.

2. Compute L™! (a triangular matrix can be inverted with relatively small computa-
tional effort).

3. Compute H from Eq. (9.24).

4. Solve the standard eigenvalue problem Hz = Az (e.g., using Jacobi method).

5. Recover the eigenvectors of the original problem from Eq. (9.22): X = (L HTzZ.
Note that the eigenvalues were untouched by the transformation.

An important special case is where B is a diagonal matrix:

By 0 - 0
0 B, -~ 0
=1. .2 . . (9.25)
0 0 - B,
Here
o 0 29 o
172 -1/2
L 0 2 0 _— 0 2‘ 0
0 0 W 0 0 Bt/
and
Hy = Ay (B:iB;)”"° 9.26)
W stdForm

Given the matrices A and B, the function stdFormreturns H and the transformation
matrix T = (L™1)7. The inversion of L is carried out by the subfunction invert (the
triangular shape of L allows this to be done by back substitution).

function [H,T] = stdForm(A,B)

% Transforms A*x = lambda*B*x to H*z = lambda*z

% and computes transformation matrix T in x = T*z.
% USAGE: [H,T] = stdForm(A,B)

o]
Il

size(A,1);

choleski(B); Linv = invert(L);

=
Il
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H = Linv*(A*Linv’); T = Linv’;

function Linv = invert(L)
% Inverts lower triangular matrix L.
n = size(L,1);
for j = 1:n-1
L(j,3) = 1/L(3,3);
for i = j+l1:n

L(i,J) = -dot(L(4i,j:i-1), L(J:i-1,3)/L(i,1));
end

end

L(n,n) = 1/L(n,n); Linv = L;

end
end
EXAMPLE 9.1

40 MPai

—
30 MP ﬁ MPa

— 80 MPa

60 MPa

The stress matrix (tensor) corresponding to the state of stress shown is

80 30 O
S=|30 40 O|MPa
0 0 60

(each row of the matrix consists of the three stress components acting on a coordi-
nate plane). It can be shown that the eigenvalues of S are the principal stresses and the
eigenvectors are normal to the principal planes. (1) Determine the principal stresses
by diagonalizing S with a Jacobi rotation and (2) compute the eigenvectors.

Solution of Part (1) To eliminate S;; we must apply a rotation in the 1-2 plane. With
k=1and ¢ =2Eq.(9.15)is

¢__511—522__80—40__g
- 2S.,  230) 3

Equation (9.16a) then yields
f— sgn(¢) _ -1
ol + V> +1  2/3+/(2/3)2+1

= —0.53518
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According to Egs. (9.18), the changes in S due to the rotation are

Sfl = §11 — tS12 = 80 — (—0.53518) (30) = 96.055 MPa
S;‘Z = Sy +tS12 =40 + (—0.53518) (30) = 23.945 MPa
sz = 351 =0

Hence the diagonalized stress matrix is

96.055 0 0
S$* = 0 23945 O
0 0 60

where the diagonal terms are the principal stresses.

Solution of Part (2) To compute the eigenvectors, we start with Egs. (9.17) and (9.19),
which yield
P S 1
V1+£2 /14 (—0.53518)2
s = tc=(—0.53518) (0.88168) = —0.47186

S —0.47186
T = =
1+c¢ 1+0.88168

=0.88168

= —0.25077

We obtain the changes in the transformation matrix P from Egs. (9.20). Recalling that
P isinitialized to the identity matrix (P; = 1and P;; = 0, i # i) the first equation gives
us

Pfy = Py —s(Pi2 +1P11)

=1-(-0.47186) (0 + (—0.25077) (1)) = 0.88167

Py = Py — s(Pyy + T Py)

=0—(—0.47186) [1 + (—0.25077) (0)] = 0.47186
Similarly, the second equation of Egs. (9.20) yields
Py, = —0.47186 P}, =0.88167
The third row and column of P are not affected by the transformation. Thus

0.88167 —0.47186 O
P*=047186 0.88167 0
0 01

The columns of P* are the eigenvectors of S.
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EXAMPLE 9.2

=
-
IQ
=)
IO
=)
“O

(1) Show that the analysis of the electric circuit shown leads to a matrix eigen-
value problem. (2) Determine the circular frequencies and the relative amplitudes of
the currents.

Solution of Part (1) Kirchoff’s equations for the three loops are

L% * ql?,_cq2 =0
L% n ng_cql " ng‘qs -0
2L%+q3;q2+q—g=o
Differentiating and substituting dq;./dt = i, we get
%il - %ig = —LC%
—%il + %ig —iy = —LC%
—iy + 203 = —2LC%

These equations admit the solution
ix(t) = g sinwt

where w is the circular frequency of oscillation (measured in rad/s) and uy are the
relative amplitudes of the currents. Substitution into Kirchoff’s equations yields Au =
ABu (sin wt cancels out), where

1/3 -1/3 0 1 00
A=|-1/3 4/3 -1 B=|0 1 0 A = LCw?
0o -1 2 00 2

which represents an eigenvalue problem of the nonstandard form.
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Solution of Part (2) Since B is a diagonal matrix, we can readily transform the prob-
lem into the standard form Hz = Az. From Eq. (9.26a) we get

1 0 0
L!'=|01 o
0 0 1/V2
and Eq. (9.26b) yields
1/3 -1/3 0
H=|-1/3 4/3 —1/42
0 —1/v2 1

The eigenvalues and eigenvectors of H can now be obtained with Jacobi method.
Skipping the details, the results are

A1 =0.14779 Az = 0.58235 Az = 1.93653

0.81027 0.56274 0.16370
z, = | 0.45102 7z, = | —0.42040 73 = | —0.78730
0.37423 —-0.71176 0.59444
The eigenvectors of the original problem are recovered from Eq. (9.22):y; = (L™ HTg,
which yields
0.81027 0.56274 0.16370
u; = | 0.45102 u; = | —0.42040 us = [ —0.78730
0.26462 —0.50329 0.42033

These vectors should now be normalized (each z; was normalized, but the transfor-
mation to u; does not preserve the magnitudes of vectors). The circular frequencies

are w; = \/A;j/ (LC), so that

0.3844 0.7631 1.3916
wl = Wy = w2 =
T JIc 2T JIC T JIC
EXAMPLE 9.3
n+1
-1 0 1 2 n-1 n n+2
P——==1 I I I I —o—X
Do L

The propped cantilever beam carries a compressive axial load P. The lateral dis-

placement u(x) of the beam can be shown to satisfy the differential equation
P
@ 1
u —u =0 a
+ i (a)

where ET is the bending rigidity. The boundary conditions are

u0) =u"(0)=0 wll)=u(L)=0 (b)
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(1) Show that buckling analysis of the beam results in a matrix eigenvalue problem
if the derivatives are approximated by finite differences. (2) Use Jacobi method to
compute the lowest three buckling loads and the corresponding eigenvectors.

Solution of Part (1) We divide the beam into n + 1 segments of length L/(n + 1) each
as shown and enforce the differential equation at nodes 1 to n. Replacing the deriva-
tives of uin Eq. (a) by central finite differences of O(h?) at the interior nodes (nodes
1 to n), we obtain

Ui_p — AUy + 6U; — 4l + Uiy
h4
_ P w420 —win
T EI h? ’

i=12,...,n

After multiplication by /i, the equations become

U_1 —4uy + 6u; — 4y + us = AM—uy + 21y — Up)
Up —4uy +6up —4us + Uy = A(—u; + 2up — ug)
()
Up—3 — 4Up_3 + 6Uy_ 1 — Uy, + Upy1 = M=Up_2 +2Up_1 — Uy)

Up—2 — 4Up_1 + 6Uy, — 4un+1 + Upy2 = A(_un—l +2up — un+1)

where

Ph? PI?

~EI ~ (n+12EI

The displacements u_;, Uy, 4,41, and u,,» can be eliminated by using the prescribed
boundary conditions. Referring to Table 8.1, the finite difference approximations to
the boundary conditions in Egs. (b) yield

U=0 u;=-u Up1 =0 Upp2 = Uy

Substitution into Egs. (c¢) yields the matrix eigenvalue problem Ax = ABx, where

5 -4 1 0 0 -~ 0
-4 6 —4 1 0 --- 0
1 -4 6 -4 1 -~ 0

A=
0 1 -4 6 -4 1
0 0 1 -4 6 —4
0 0 0 1 —4 7]
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2 -1 0 0 0 0
-1 2 -1 0 0 - 0

0 -1 2 -1 0 0

0 -~ 0 -1 2 -1 0

0 - 0 0 -1 2 -1

L 0o - 0 0 o0 -1 2]

Solution of Part (2) The problem with Jacobi method is that it insists on finding all
the eigenvalues and eigenvectors. It is also incapable of exploiting banded structures
of matrices. Thus the program listed below does much more work than necessary for
the problem at hand. More efficient methods of solution will be introduced later in
this chapter.

% Example 9.3 (Jacobi method)

n = 10; % Number of interior nodes.
A = zeros(n); B = zeros(n); % Start constructing A and B.
for i = 1:n

A(i,i) = 6; B(i,i) = 2;
end
A(1,1) = 5; A(n,n) = 7;
for i = 1:n-1

A(i,i+1) = -4; A(i+1l,i) = -4;
B(i,i+1) = -1; B(i+1l,i) = -1;
end
for i = 1:n-2
A(i,i+2) = 1; A(i+2,i) = 1;
end
[H, T] = stdForm(A,B); % Convert to std. form.
[eVals,Z] = jacobi(H); % Solve by Jacobi method.
X = T*Z; % Eigenvectors of orig. prob.
for i = 1:n % Normalize eigenvectors.

xMag = sqrt(dot(X(:,i),X(:,i)));
X(:,i) = X(:,1i)/xMag;

end

[eVals,X] = sortEigen(eVals,X); % Sort in ascending order.
eigenvalues = eVals(1l:3)’ % Extract 3 smallest
eigenvectors = X(:,1:3) % eigenvalues & vectors.

Running the program resulted in the following output:

>> eigenvalues =
0.1641 0.4720 0.9022
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eigenvectors =
0.1641 -0.1848 0.3070

0.3062 -0.2682 0.3640
0.4079 -0.1968 0.1467
0.4574 0.0099 -0.1219
0.4515 0.2685 -0.1725
0.3961 0.4711 0.0677
0.3052 0.5361 0.4089
0.1986 0.4471 0.5704
0.0988 0.2602 0.4334
0.0270 0.0778 0.1486

The first three mode shapes, which represent the relative displacements of the
bucked beam, are plotted below (we appended the zero end displacements to the
eigenvectors before plotting the points).

0.6

0.4
=

0.2

0.0

-0.2

-0.4

The buckling loads are given by P, = (n+ 1)? ;; EI/L?. Thus

(11)2 (0.1641) EI EI
(11)2 (0.4720) EI EI
P, = — = 57'”?
(11)2 (0.9022) EI EI

The analytical values are P, = 20.19E1/L?, P, =59.68EI/L? and P; = 1189EI/L2.
It can be seen that the error introduced by the finite element approximation increases
with the mode number (the error in P, is larger than in P,). Of course, the accuracy
of the finite difference model can be improved by using larger rn, but beyond n = 20
the cost of computation with Jacobi method becomes rather high.
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Inverse Power and Power Methods
Inverse Power Method

The inverse power method is a simple iterative procedure for finding the smallest
eigenvalue A; and the corresponding eigenvector x; of

Ax = Ax 9.27)

The method works like this:

1. Letvbe an approximation to x; (a random vector of unit magnitude will do).
2. Solve

for the vector z.
3. Compute |z|.
4. Letv = z/|z| and repeat steps 2—4 until the change in v is negligible.

At the conclusion of the procedure, |z| = +1/A; and v = x;. The sign of 1, is de-
termined as follows: if z changes sign between successive iterations, A, is negative;
otherwise, use the plus sign.

Let us now investigate why the method works. Since the eigenvectors x; of Eq.
(9.27) are orthonormal, they can be used as the basis for any n-dimensional vector.
Thus v and z admit the unique representations

n n
V= Z ViX; zZ= Z ZiX; (@
i=1 i=1

Note that v; and z; are not the elements of v and z, but the components with respect
to the eigenvectors x;. Substitution into Eq. (9.28) yields

n n
AZZZ'X,' — Z ViX; = 0
i=1 i=1
But Ax; = 1;X;, so that

n
> (@ri—v)xi =0

i=1

Hence
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It follows from Eq. (a) that

v 1 A
i 1
= 1 )T;Xi = )Tl E Vi—X; (929)

i=1

=
—1 V1X —l—vklx +vx1x+
_)»1 1X] 2/\22 3A33

Since |A1/A;] <1 (i # 1), we observe that the coefficient of x; has become more
prominent in z than it was in v; hence, z is a better approximation to x;. This com-
pletes the first iterative cycle.

In subsequent cycles, we set v = z/|z| and repeat the process. Each iteration will
increase the dominance of the first term in Eq. (9.29) so that the process converges to

1 1
Z=—UX] = —X
Mll )L11

(at this stagev=x;,sothatv; =1, 1, =v3 =--- =0).
The inverse power method also works with the nonstandard eigenvalue problem

Ax = ABx (9.30)
provided that Eq. (9.28) is replaced by
Az = Bv (9.31)

The alternative is, of course, to transform the problem to standard form before ap-
plying the power method.

Eigenvalue Shifting

By inspection of Eq. (9.29) we see that the rate of convergence is determined by the
strength of the inequality|1, /12| < 1 (the second term in the equation). If |1, is well
separated from ||, the inequality is strong and the convergence is rapid. On the
other hand, close proximity of these two eigenvalues results in very slow conver-
gence.

The rate of convergence can be improved by a technique called eigenvalue shift-
ing. Letting

A=A"+s (9.32)

where s is a predetermined “shift,” the eigenvalue problem in Eq. (9.27) is trans-
formed to

Ax = (W 4+ 9)x
or

A*x = A*x (9.33)

e b (55kw annd - e 3590l - I e ol



www.MatlabKar.com e b (3l At - e 35901 - IS e ol

9.3 Inverse Power and Power Methods

where
A* =A sl (9.34)

Solving the transformed problem in Eq. (9.33) by the inverse power method yields A}
and x,, where 1] is the smallest eigenvalue of A*. The corresponding eigenvalue of
the original problem, A = A} + s, is thus the eigenvalue closest to s.

Eigenvalue shifting has two applications. An obvious one is the determination of
the eigenvalue closest to a certain value s. For example, if the working speed of a shaft
is s rev/min, it is imperative to assure that there are no natural frequencies (which are
related to the eigenvalues) close to that speed.

Eigenvalue shifting is also used to speed up convergence. Suppose that we are
computing the smallest eigenvalue 1, of the matrix A. The idea is to introduce a shift
s that makes Aj/A3 as small as possible. Since A} = 1, — s, we should choose s ~ 1,
(s = A1 should be avoided to prevent division by zero). Of course, this method works
only if we have a prior estimate of A;.

The inverse power method with eigenvalue shifting is a particularly powerful
tool for finding eigenvectors if the eigenvalues are known. By shifting very close
to an eigenvalue, the corresponding eigenvector can be computed in one or two
iterations.

Power Method

The power method converges to the eigenvalue furthest from zero and the associated
eigenvector. It is very similar to the inverse power method; the only difference be-
tween the two methods is the interchange of v and z in Eq. (9.28). The outline of the
procedure is:

1. Letvbe an approximation to x, (a random vector of unit magnitude will do).
2. Compute the vector

Z = Av (9.35)
3. Compute |z|.

4. Letv = z/|z| and repeat steps 2—4 until the change in v is negligible.

At the conclusion of the procedure, |z| = £, and v = x,, (the sign of 1, is deter-
mined in the same way as in the inverse power method).

B invPower

Given the matrix A and the scalar s, the function invPower returns the eigenvalue
of A closest to s and the corresponding eigenvector. The matrix A* = A — sI is de-
composed as soon as it is formed, so that only the solution phase (forward and back
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substitution) is needed in the iterative loop. If A is banded, the efficiency of the pro-
gram can be improved by replacing LUdec and LUsol by functions that specialize
in banded matrices — see Example 9.6. The program line that forms A* must also be
modified to be compatible with the storage scheme used for A.

function [eVal,eVec] = invPower(A,s,maxIter,tol)

% Inverse power method for finding the eigenvalue of A

% closest to s & the corresponding eigenvector.

% USAGE: [eVal,eVec] = invPower(A,s,maxIter,tol)

% maxIter = limit on number of iterations (default is 50).

% tol = error tolerance (default is 1.0e-6).

if nargin < 4; tol = 1.0e-6; end
if nargin < 3; maxIter = 50; end

n = size(A,1);

A = A - eye(n)*s; % Form A* = A - sI
A = LUdec(A); % Decompose A*
x = rand(n,1); % Seed eigenvecs. with random numbers
xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x
for i = l:maxIter
x01ld = x; % Save current eigenvecs.

x = LUsol(A,x); % Solve A*x = x01d
xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x
xSign = sign(dot(x01ld,x)); % Detect sign change of x
X = X*xSign;
% Check for convergence
if sgrt(dot(x0ld - x,x01d - x)) < tol
eVal = s + xSign/xMag; eVec = X;
return
end
end

error(’Too many iterations’)

EXAMPLE 9.4
The stress matrix describing the state of stress at a point is

-30 10 20
S= 10 40 -50|MPa
20 =50 -10

Determine the largest principal stress (the eigenvalue of S furthest from zero) by the
power method.
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Solution First iteration:

T
Letv = [1 0 0] be the initial guess for the eigenvector. Then

—-30 10 20 1 —-30.0
Z=Sv= 10 40 -50 0= 10.0
20 =50 -10 0 20.0
|z| =+v/302 4102 + 202 = 37.417
Z —-30.0 1 —0.80177
V= — = 10.0 = 0.267 26
|z| 37.417
20.0 0.53452
Second iteration:
-30 10 20 -0.80177 37.416
zZ=Sv= 10 40 -50 0.26726 | = | —24.053
20 —-50 -10 0.53452 —34.744

|z| = v/37.4162 + 24.0532 + 34.7442 = 56. 442

Z 37.416 1 0.66291
v |z| 053 56442 0.426 15
—34.744 —0.61557
Third iteration:
-30 10 20 0.66291 —36.460
Z=Sv= 10 40 -50 —0.42615 | = 20.362
20 -50 -10 —0.61557 40.721

|z| = \/36.4602 + 20.3622 + 40.721% = 58.328

) 36460 —0.62509
v=—=| 20362 |-——=| 0.34909

Iz| 58.328
40.721 0.69814

At this point the approximation of the eigenvalue we seek is A = —58.328 MPa (the
negative sign is determined by the sign reversal of z between iterations). This is actu-
ally close to the second-largest eigenvalue 1, = —58.39 MPa. By continuing the itera-
tive process we would eventually end up with the largest eigenvalue 13 = 70.94 MPa.
But since |1,| and |A3| are rather close, the convergence is too slow from this point on
for manual labor. Here is a program that does the calculations for us:

% Example 9.4 (Power method)
S = [-30 10 20; 10 40 -50; 20 -50 -101;
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for

end

[1; 0; O1;
i = 1:100
vOld = v; z = S*v; zMag = sqrt(dot(z,z));
v = z/zMag; vSign = sign(dot(v0ld,v));
v = v¥*vSign;
if sgrt(dot(v0ld - v,v0ld - v)) < 1.0e-6
eVal = vSign*zMag
numlIter = i
return

end

error(’Too many iterations’)

The results are:

>> eVal =

70.9435

numlter =

93

Note that it took 93 iterations to reach convergence.

EXAMPLE 9.5
Determine the smallest eigenvalue 1; and the corresponding eigenvector of

1 2 3 1 4

29 3 56 2

A=| 3 3 15 4 3
1 5 4 12 4

4 2 3 4 17

e b (55kw annd - e 3590l - I e ol

Use the inverse power method with eigenvalue shifting knowing that A; ~ 5.

Solution

% Example 9.5 (Inverse power method)

s = 5;
A=1T[11 2 3 1 4;

2 9 3 5 2;

3 315 4 3;

1 5 4 12 4;

4 2 3 4 17];
[eVal,eVec] = invPower(A,s)
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Here is the output:

>> eVal =
4.8739

eVec =
0.2673
-0.7414
-0.0502
0.5949
-0.1497

Convergence was achieved with 4 iterations. Without the eigenvalue shift 26 it-
eration would be required.

EXAMPLE 9.6

Unlike Jacobi diagonalization, the inverse power method lends itself to eigenvalue
problems of banded matrices. Write a program that computes the smallest buckling
load of the beam described in Example 9.3, making full use of the banded forms. Run
the program with 100 interior nodes (n = 100).

Solution The function invPowers5 listed below returns the smallest eigenvalue and
the corresponding eigenvector of Ax = ABx, where A is a pentadiagonal matrix and B
is a sparse matrix (in this problem it is tridiagonal). The matrix A is input by its diago-
nals d, e, and f as was done in Section 2.4 in conjunction with the LU decomposition.
The algorithm for invPowers5 does not use B directly, but calls the function func(v)
that supplies the product Bv. Eigenvalue shifting is not used.

function [eVal,eVec] = invPower5(func,d,e,f)

% Finds smallest eigenvalue of A*x = lambda*B*x by
% the inverse power method.

% USAGE: [eVal,eVec] = invPower5(func,d,e,f)

% Matrix A must be pentadiagonal and stored in form
% A = [f\e\d\e\f].

% func = handle of function that returns B*v.

n = length(d);
[d,e,f] = LUdec5(d,e,f); % Decompose A
x = rand(n,1); % Seed x with random numbers
xMag = sqgrt(dot(x,x)); X = x/xMag; % Normalize x
for i = 1:50
x01d = x; % Save current x
x = LUsol5(d,e,f,feval(func,x)); % Solve [A]l{x} = [B]{x01ld}
xMag = sqgrt(dot(x,x)); X = x/xMag; % Normalize x
xSign = sign(dot(x01d,x)); % Detect sign change of x

X = x*xSign;
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% Check for convergence
if sqrt(dot(x0ld - x,x01d - x)) < 1.0e-6
eVal = xSign/xMag; eVec = Xx;
return
end
end

error(’Too many iterations’)

The function that computes Bv is

function Bv = fex9_6(v)

% Computes the product B*v in Example 9.6.

n = length(v);

Bv = zeros(n,1l);

for i = 2:n-1

Bv(i) = -v(i-1) + 2*v(i) - v(i+l);
end
Bv(l) = 2*v(1l) - v(2);

Bv(n) = -v(n-1) + 2*v(n);
Here is the program that calls invPower5:

% Example 9.6 (Inverse power method for pentadiagonal A)
= 100;

ones(n,1)*6;

d(1) = 5; d(n) = 7;

= ones(n-1,1)*(-4);

f ones(n-2,1);

[eVal,eVec] = invPower5(@fex9_6,d,e,f);

fprintf(’PL"2/EI =’)

fprintf(’%9.4f’ ,eVal*(n+1) "2)

Q B
1

()

The output, shown below, is in excellent agreement with the analytical value.

>> PL"2/EI = 20.1867

PROBLEM SET 9.1

1. Given

o © w
© o
=
Il
©c o
o © o
s~ o o
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convert the eigenvalue problem Ax = ABx to the standard form Hz = Az. What is
the relationship between x and z?
2. Convert the eigenvalue problem Ax = ABx, where

4 -1 0 2 -1 0
A=|-1 4 -1 B=|-1 2 -1
0 -1 4 0 -1 1

to the standard form.
3. An eigenvalue of the problem in Problem 2 is roughly 2.5. Use the inverse power
method with eigenvalue shifting to compute this eigenvalue to four decimal

T
places. Start with x = [1 0 0] . Hint: Two iterations should be sufficient.
4. The stress matrix at a point is

150 -60 O
S=]-60 120 0 |MPa
0 0 80

Compute the principal stresses (eigenvalues of S).

The two pendulums are connected by a spring which is undeformed when the

pendulums are vertical. The equations of motion of the system can be shown to
be

kL6, —61) — mgd, = mLb,

—kL©®2 —61) —2mgh, = 2mL,

where 0; and 6, are the angular displacements and k is the spring stiffness.
Determine the circular frequencies of vibration and the relative amplitudes
of the angular displacements. Use m = 0.25 kg, k = 20 N/m, L = 0.75 m, and
g = 9.80665 m/s?.
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6.

L L
00000~ 00000~

G L

DA

00000,
L
Kirchoff’s laws for the electric circuit are
dai
3ip—lp—ig =—LC—
1—hk—0 ar
d?i,
—h+ibh=—-LC—=
1+ 0 ar
d?is
—h+i3=—-LC—
1+ ar

Compute the circular frequencies of the circuit and the relative amplitudes of the
loop currents.
7. Compute the matrix A* that results from annihilation A;4 and Ay4; in the matrix

4 -1 01
A— -1 6 -2 0
0 -2 3 2
1 0 2 4

by a Jacobi rotation.
8. W Use the Jacobi method to determine the eigenvalues and eigenvectors of

4 -1 2
A=|-1 3 3
-2 31

9. M Find the eigenvalues and eigenvectors of

with the Jacobi method.
10. W Use the power method to compute the largest eigenvalue and the correspond-
ing eigenvector of the matrix A given in Problem 9.
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11. W Find the smallest eigenvalue and the corresponding eigenvector of the matrix
A in Problem 9. Use the inverse power method

12. W Let
14 08 0.4 04 -0.1 0.0
A=(0.8 6.6 0.8 B=|-01 04 -0.1
04 08 5.0 0.0 -0.1 0.4

Find the eigenvalues and eigenvectors of Ax = ABx by the Jacobi method.
13. W Use the inverse power method to compute the smallest eigenvalue in Problem

12.
14. W Use the Jacobi method to compute the eigenvalues and eigenvectors of the
matrix
[ 11 2 3 4 2]
29 3 5 21
3 3 15 3 2
A:
1 5 4 12 4 3
4 2 3 4 17 5
| 21 2 3 5 8]

15. W Find the eigenvalues of Ax = ABx by the Jacobi method, where

6 —4 1 0 1 -2 3 -1
—4 — _ —
A— 6 4 1 B— 2 6 2 3
1 -4 6 —4 3 -2 6 -2
1 -4 7 -1 3 -2 9

Warning: B is not positive definite
16. m

u

T T T T 1T 1T T 1T T 1T 1 17 1—X
12 n

The figure shows a cantilever beam with a superimposed finite difference mesh.
If u(x, t) is the lateral displacement of the beam, the differential equation of mo-
tion governing bending vibrations is

w__Yy

u El

where y is the mass per unit length and EI is the bending rigidity. The boun-
dary conditions are u(0, t) = v/(0, 1) = u"(L, t) = u” (L, t) = 0. With u(x, 1) = y(x)
sin wt the problem becomes

2

yo = % y  yO=y0=y'(L)=y"(L)=0
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The corresponding finite difference equations are

7 —4 1 0 0 0 N N
—4 6 —4 1 0o --- 0 V2 V2
1 -4 6 -4 1 - 0 V3 V3
A= o e e e e e o =A
0o - 1 -4 6 —4 1 Yn—2 Vn—2
o - 0 1 -4 5 =2 Yn-1 Vn-1
| 0 0 o0 1 -2 1L yn | Vn/2 |

where
L (LY
EI \n

(a) Write down the matrix H of the standard form Hz = Az and the transforma-
tion matrix P as in y = Pz. (b) Write a program that computes the lowest two
circular frequencies of the beam and the corresponding mode shapes (eigenvec-
tors) using the Jacobi method. Run the program with n = 10. Note: the analytical
solution for the lowest circular frequency is w, = (3.515/L%) /EI/y.

17. |

p L/4 L/2 Li4 p
— | | J-—
El, 2E|, Ebo
@)
L/4 L/4

012345678910

(b)

The simply supported column in Fig. (a) consists of three segments with the
bending rigidities shown. If only the first buckling mode is of interest, it is suf-
ficient to model half of the beam as shown in Fig. (b). The differential equation
for the lateral displacement u(x) is
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with the boundary conditions #(0) = w/(0) = 0. The corresponding finite differ-
ence equations are

2 -1 0 0 0 0 O 0] [ w ] [ ow ]
-1 2 -1 0 0 0 O 0| w U

0 -1 2 -1 0 0 0 0| us us

0 0 -1 2 -1 0 0 0| Uy

0 0 0 -1 2 -1 0 0| s | = | us/1.5
0o 0 0 0 -1 2 -1 0| u Ug /2
0 0 0 0 0 -1 2 -1 Uy Uy /2

0.~ 0 0 0 0 0 -1 1| wo] | tho/4 |

where

o P (LY
T EL \20
Write a program that computes the lowest buckling load P of the column with

the inverse power method. Utilize the banded forms of the matrices.
18. m

P

The springs supporting the three-bar linkage are undeformed when the linkage
is horizontal. The equilibrium equations of the linkage in the presence of the
horizontal force P can be shown to be

6 5 3 01 p 1 11 01
3 3 2 02 | = L 011 02
1 11 03 0 0 1 03

where k is the spring stiffness. Determine the smallest buckling load P and the
corresponding mode shape. Hint: The equations can easily rewritten in the stan-
dard form A# = A0, where A is symmetric.

19. m

— U1 . u2 U

k Lk k k
mj 3m | 2mewm—|
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The differential equations of motion for the mass—spring system are

k(—2u + wp) = miy
k(u1 — 2Lt2 + u3) = SmLtg

k(uz — 2Lt3) = Zmilg

where u;(t) is the displacement of mass i from its equilibrium position and k
is the spring stiffness. Determine the circular frequencies of vibration and the
corresponding mode shapes.

20. m

f

Y
/1

. Ly . Ly . .
W s 4Ted s

Kirchoff’s equations for the circuit are

L% bl ) =0
L% b2+ o~ i) =0
L% F 2l gl =0

L% + %(i4—i3)+%i4 =0

Find the circular frequencies of the current.
21. m
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Determine the circular frequencies of oscillation for the circuit shown, given the
Kirchoff equations

L@ +1 (d2i1 dle) 1

ar az ae)tch =0

i By, B\ 2
p(2_2h) (42 _9B), 2 _y
<dt2 dt2>+ (dt2 dt2>+ C

27 237 27 27
L(dlg—dlz)-i-L(dla—dl4>+ii3:0

dr? dr? dr? dr? C
d?iy  d%is d?iy .
L4 4By, 4, 2o
(dt2 dar? ) az ¢

22. MW Several iterative methods exist for finding the eigenvalues of a matrix A. One of
these is the LR method, which requires the matrix to be symmetric and positive
definite. Its algorithm is very simple:

LetAp =A

dowithi=0,1,2,...
Use Choleski’s decomposition A;= L;L| to compute L;
FormA;; = L/L;

end do

It can be shown that the diagonal elements of A;; converge to the eigenvalues
of A. Write a program that implements the LR method and test it with

N W
w N =

Householder Reduction to Tridiagonal Form

It was mentioned before that similarity transformations can be used to transform an
eigenvalue problem to a form that is easier to solve. The most desirable of the “easy”
forms is, of course, the diagonal form that results from the Jacobi method. However,
the Jacobi method requires about 1073 to 207% multiplications, so that the amount of
computation increases very rapidly with n. We are generally better off by reducing the
matrix to the tridiagonal form, which can be done in precisely n — 2 transformations
by the Householder method. Once the tridiagonal form is achieved, we still have to
extract the eigenvalues and the eigenvectors, but there are effective means of dealing
with that, as we see in the next section.
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Householder Matrix

Householder’s transformation utilizes the Householder matrix

T
uu

=I- — 9.36

Q j7; ( )

where u is a vector and

1 1

H=-u"u=_ |u)? 9.37

guu=s; lul (9.37)

Note that uu” in Eq. (9.36) is the outer product; that is, a matrix with the elements
(uuT)l.. = wu;. Since Q is obviously symmetric (Q”= Q), we can write

i
T v uu’ uu’) uu”  u(u’u)u’
QQ_QQ_<I_7H><I_7H>_I_2?+T

uwu! u@Hu’
H '
which shows that Q is also orthogonal.

Now let x be an arbitrary vector and consider the transformation Qx. Choosing

I

u=x-+ ke; (9.38)
where
T
k=+x| e = [100.-. 0]
we get
uu’? u(x+ kel)T
__u(x'xt+kex)  u(k +kx)
=X- H —XT T H
But
2H = (x+ke;) (x+ key) = [x2 + k (x" e, +ex) + k%ele,
= k% + 2kx; + k* = 2 (k* + kxy)
so that

T
Qx:x—u:—kelz[—koon-o] (9.39)

Hence the transformation eliminates all elements of x except the first one.

Householder Reduction of a Symmetric Matrix

Let us now apply the following transformation to a symmetric n x n matrix A:

T T T
PIA: |:1 0 i| |:A11 X :| _ |:A11 X C| (940)
0 Q|| x A Qx QA
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Here x represents the first column of A with the first element omitted, and A’
is simply A with its first row and column removed. The matrix Q of dimensions
(n—1) x (n—1) is constructed using Eqgs. (9.36)-(9.38). Referring to Eq. (9.39), we
see that the transformation reduces the first column of A to

An
-k
A1 _l o
Qx .
0
The transformation
T
A< pap = |41 (@ (9.41)
Qx QAQ

thus tridiagonalizes the first row as well as the first column of A. Here is a diagram of
the transformation for a 4 x 4 matrix:

110 0 o|[An A2 As Aul|[1]0 0 o0
0 Ao 0
0 Q | Ag A 0 Q
0 An 0
A11 —k 0 0

| -k

| o QA'Q
0

The second row and column of A are reduced next by applying the transformation to
the 3 x 3 lower right portion of the matrix. This transformation can be expressed as
A < P,AP,, where now

| of
P, = [0 Q } (9.42)

InEq. (9.42) I, isa2 x 2identity matrixand Qisa (n — 2) x (n — 2) matrix constructed
by choosing for x the bottom 7 — 2 elements of the second column of A. It takes a total
of n — 2 transformation with

. T
P, = I 0 , i=1,2,...,n=2
0 Q

to attain the tridiagonal form.
It is wasteful to form P; and the carry out the matrix multiplication P;AP;. We
note that

AQ=A (1 . ““HT> —A - %uT —A—vu’
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where
A/
y=24 (9.43)
H
Therefore,
Qv = (1= ") (W-vu’) = A—vu” - " (A—vu)
H H
A vaT u (u’A’) L (u’v)u’”
H H
=A-—vu’—uv’ 4 2guu’
where
_ulv (9.44)
£~ 2H '
Letting
w=vV-—gu (9.45)
it can be easily verified that the transformation can be written as
QA'Q = A'—wu—uw’ (9.46)

which gives us the following computational procedure which is to be carried out with
i=12,...,n—2:

1. LetA’ be the (n — i) x (n — i) lower right-hand portion of A.

2. Letx=[Ajy1; Aipoi --- Ap;l? (the column of length n — i just left of A").

3. Compute |x|. Let k = |x| if x; > 0 and k = — |x| if x; < 0 (this choice of sign mini-
mizes the roundoff error).
Letu=[k+x 1 X3 - X;]”.
Compute H = |u| /2.

Compute v=A'u/H.

Compute g =u’v/(2 H).
Computew =v — gu

©LeNS A

Compute the transformation A’ — A'—w’ u — u’w.
10. SetA;;y1 = Aif1,i = —k.

Accumulated Transformation Matrix

Since we used similarity transformations, the eigenvalues of the tridiagonal matrix
are the same as those of the original matrix. However, to determine the eigenvectors
X of original A we must use the transformation

X= PXtridiag
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where P is the accumulation of the individual transformations:
P=PP--P,

We build up the accumulated transformation matrix by initializing P to a n x niden-
tity matrix and then applying the transformation

P p I, oF p P
popp |t Pl 0" _|Pu P2aQ b)
P21 sz 0 Q P12 P22Q
withi=1,2,..., n— 2.1t can be seen that each multiplication affects only the right-

most n — i columns of P (since the first row of P;, contains only zeros, it can also be
omitted in the multiplication). Using the notation

p— P
Py,

we have
P2Q , ) uu’ , Pu , / T
=PQ=P(I—-— )| =P — — =P'— 9.47
|:P22Q:| Q ( H H" v ©47
where
P'u

= — 9.48
Y=§¢ (9.48)

The procedure for carrying out the matrix multiplication in Eq. (b) is:

e Retrieve u (in our triangularization procedure the us are stored in the columns of
the lower triangular portion of A).

e Compute H = |u| /2

e Computey = P'u/H.

e Compute the transformation P'— P'—yu”

B householder

This function performs the Householder reduction on the matrix A and optionally
computes the transformation matrix P. During the reduction process the portion of
A below the principal diagonal is utilized to store the vectors u that are needed in the
computation of the P.

function [c,d,P] = householder(A)

% Housholder reduction of A to tridiagonal form A -> [c\d\c].

% USAGE: [c,d] = householder(A) computes c and d only.

% [c,d,P] = householder(A) also computes the transformation

% matrix P.

% Householder reduction
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n = size(A,1);

for k

u

uMag

1:n-

2

A(k+1l:n,k);

sqrt(dot(u,u));
if u(l) < 0;

u(l) u(l) + uMag;

A(k+1l:n,k) = u;
dot(u,u)/2;
A(k+1l:n,k+1:n)*u/H;
dot(u,v)/(2*H);

H

v

g
v

v -

g*u;

uMag = -uMag;

end

A(k+l:n,k+1:n) = A(k+l:n,k+1:n) -

ACk,k+1)

end

d = diag(A);

if nargout == 3;

% Computation of the transformation matrix

= -uMag;

c = diag(A,1);

function P = transMatrix

P = transMatrix;

end

P = eye(n);
for k = 1:n-2
u = A(k+1l:n,k);
H = dot(u,u)/2;
v = P(l:n,k+1:n)*u/H;
P(l:n,k+1:n) = P(1l:n,k+1:n)
end
end
end
EXAMPLE 9.7
Transform the matrix
7 2 3
A— 2 8 5
3 5 12
-1 1 9

4

- v*u’;

into tridiagonal form using Householder reduction.

Solution Reduce first row and column:

A=|5 12 9

1 9 7

e b (55kw annd - e 3590l - I e ol

% Save u in lower part of A

- u*v’;

k = x| = 3.7417
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k+x 5.7417 )
u= X2 = 3 H:§|u|2:21.484
X3 -1

32967 17225 -—5.7417

uu’ =| 17.225 9 -3
—5.7417 -3 1
wu” —0.53450 —0.80176 0.26725
Q=I—?= —0.80176  0.58108 0.13964

0.26725  0.13964 0.95345

10.642 —0.1388 —9.1294
QA'Q=|-0.1388 59087  4.8429
—9.1294  4.8429 10.4480

7 —3.7417 0 0
- A (Qx)T _ | —38.7417 10.642 —0.1388 —9.1294
Qx QA'Q - 0 —-0.1388 5.9087 4.8429
0 —9.1294 4.8429 10.4480
In the last step, we used the formulaQx=[-k 0 -.- 0] T,

Reduce second row and column:

,|5.9087  4.8429 o | ~0-1388
" 14.8429 10.4480 T —9.1294

:| k= —|x| =—-9.1305

where the negative sign on k was determined by the sign of x;.

—9.2 1
uo| K@ 179268y 1 8633
—9.1294 —9.1294 2

r 85920 84.623
84.623 83.346

Q- ~uu’ | 001521 —0.99988
B ~ 1 —-0.99988  0.01521

10.594 4.772}

A'Q =
AQ |:4.772 5.762
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7 —3.742 0 0
An A 0F
Ae|an An (@9 —3.742 10642 9.131 0
X
;1 sz 0A'Q 0 9131 10594 4.772
x 0 0 4772 5.762

EXAMPLE 9.8

Use the function householder to tridiagonalize the matrix in Example 9.7; also,
determine the transformation matrix P.

Solution

% Example 9.8 (Householder reduction)

A=1T[7 2 3 -1;
2 8 5 1;
3 512 9;
-1 1 9 71;
[c,d,P] = householder(A)

The results of running the above program are:

-3.7417
9.1309
4.7716

7.0000
10.6429
10.5942

5.7629

1.0000 0 0 0
0 -0.5345 -0.2551 0.8057
0 -0.8018 -0.1484 -0.5789
0 0.2673 -0.9555 -0.1252

Eigenvalues of Symmetric Tridiagonal Matrices
Sturm Sequence

In principle, the eigenvalues of a matrix A can be determined by finding the roots of
the characteristic equation |[A — AI| = 0. This method is impractical for large matrices
since the evaluation of the determinant involves 7®/3 multiplications. However, if the
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matrix is tridiagonal (we also assume it to be symmetric), its characteristic polyno-

mial
dl —A C1 0 0 0
C1 dy — A Co 0 0
0 C2 dg —A C3 0
) =A== 0 ¢ dy—n 0
0 0 e 0 Cho1 n— A
can be computed with only 3(n — 1) multiplications using the following sequence of
operations:
P =1
P)=d — 2 (9.49)

P = (di—MP () — ¢ Po(), i=23,...,n

The polynomials Py(A), PL(A), ..., P,(1) form a Sturm sequence that has the fol-
lowing property:

e The number of sign changes in the sequence Py(a), Pi(a), ..., P,(a) is equal to
the number of roots of P,(A) that are smaller than a. If a member P.(a) of the
sequence is zero, its sign is to be taken opposite to that of P,_; (a).

As we see shortly, Sturm sequence property makes it relatively easy to bracket the
eigenvalues of a tridiagonal matrix.

B sturmSeq

Given the diagonals ¢ and d of A = [c\d\c], and the value of A, this function returns
the Sturm sequence Py(1), P,(A), ..., P,(A). Note that P,(1) = |A — Al

function p = sturmSeq(c,d,lambda)

% Returns Sturm sequence p associated with

% the tridiagonal matrix A = [c\d\c] and lambda.
% USAGE: p = sturmSeq(c,d,lambda).

% Note that |A - lambda*I| = p(n).

n
p
p(2) = d(1) - lambda;
for i = 2:n-1

p(i+l) = (d(i) - lambda)*p(i) - (c(i-1)"2 )*p(i-1);

length(d) + 1;
ones(n,1);

end
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B count_eVals

This function counts the number of sign changes in the Sturm sequence and returns
the number of eigenvalues of the matrix A = [c\d\c] that are smaller than A.

function num_eVals = count_eVals(c,d,lambda)

% Counts eigenvalues smaller than lambda of matrix
% A = [c\d\c]. Uses the Sturm sequence.

% USAGE: num_eVals = count_eVals(c,d,lambda).

p = sturmSeq(c,d,lambda);
n = length(p);
0ldSign = 1; num_eVals = 0;
for i = 2:n
pSign = sign(p(i));
if pSign == 0; pSign = -o0ldSign; end
if pSign*oldSign < O
num_eVals = num_eVals + 1;
end
0ldSign = pSign;

end

EXAMPLE 9.9
Use the Sturm sequence property to show that the smallest eigenvalue of A is the
interval (0.25, 0.5), where

2 -1 0 O
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

A=

Solution Taking A = 0.5, we have d; — A = 1.5 and ¢? | = 1 and the Sturm sequence
in Egs. (9.49) becomes

P (0.5) =1

P(05) =15

P(0.5) =15(1.5)-1=1.25

P;(0.5) =1.5(1.25) — 1.5 =0.375
P,(0.5) = 1.5(0.375) — 1.25 = —0.6875

Since the sequence contains one sign change, there exists one eigenvalue smaller
than 0.5.

e b (55kw annd - e 3590l - I e ol
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Repeating the process with A = 0.25 (d; — A = 1.75, ¢ = 1), we get
Py (0.25) =1
P(0.25) = 1.75
P,(0.25) = 1.75(1.75) — 1 = 2.0625
P3(0.25) = 1.75(2.0625) — 1.75 = 1.8594
P,(0.25) = 1.75(1.8594) — 2.0625 = 1.1915

There are no sign changes in the sequence, so that all the eigenvalues are greater than
0.25. We thus conclude that 0.25 < 1; < 0.5.

Gerschgorin’s Theorem

Gerschgorin’s theorem is useful in determining the global bounds on the eigenval-
ues of an n x n matrix A. The term “global” means the bounds that enclose all the
eigenvalues. We give here a simplified version of the theorem for a symmetric matrix.

e If 1 is any eigenvalue of A, then

a—r<i<a+r, i=12...,n
where
n
ai=Ai =) |Ayl (9.50)
j=1
J#L

It follows that the global bounds on the eigenvalues are

Amin > m_in(a,- — i) Amax < m_a-x(ai +r) (9.51)
i i

B gerschgorin

The function gerschgorin returns the lower and the upper global bounds on the
eigenvalues of a symmetric tridiagonal matrix A = [c\d\c].

function [eValMin,eValMax]= gerschgorin(c,d)
% Evaluates the global bounds on eigenvalues
% of A = [c\d\c].

% USAGE: [eValMin,eValMax]= gerschgorin(c,d).

n = length(d);
eValMin = d(1) - abs(c(l));
eValMax = d(1) + abs(c(1l));

for i = 2:n-1
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eVal = d(i) - abs(c(i)) - abs(c(i-1));
if eVal < eValMin; eValMin = eVal; end
eVal = d(i) + abs(c(i)) + abs(c(i-1));
if evVal > eValMax; eValMax = eVal; end

end

eVal = d(n) - abs(c(n-1));

if evVal < eValMin; eValMin = eVal; end

eVal = d(n) + abs(c(n-1));

if eval > eValMax; eValMax = eVal; end

EXAMPLE 9.10
Use Gerschgorin’s theorem to determine the global bounds on the eigenvalues of the

matrix
4 -2 0
A=|-2 4 -2
0o -2 5

Solution Referring to Egs. (9.50), we get
a =4 a, =4 a3 =>5
rn=2 =4 r3 =2

Hence

v

Amin > Min(a; —r;)) =4—-4=0

IA

max(a; +1;) =4+4=8

Amax

Bracketing Eigenvalues

Sturm sequence property together with Gerschgorin’s theorem provide us conve-
nient tools for bracketing each eigenvalue of a symmetric tridiagonal matrix.

B eValBrackets

The function evalBrackets brackets the m smallest eigenvalues of a symmetric
tridiagonal matrix A = [c\d\c]. It returns the sequence ry, 12, ..., I'm1, Where each
interval (r;, ri41) contains exactly one eigenvalue. The algorithm first finds the global
bounds on the eigenvalues by Gerschgorin’s theorem. The method of bisection in
conjunction with Sturm sequence property is then used to determine the upper
bounds on A, A1, ..., A1 in that order.

function r = eValBrackets(c,d,m)
% Brackets each of the m lowest eigenvalues of A = [c\d\c]

% so that here is one eigenvalue in [r(i), r(i+1)].
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% USAGE: r = eValBrackets(c,d,m).

[eValMin,eValMax]= gerschgorin(c,d); % Find global limits
r = ones(m+1,1); r(l) = eValMin;
% Search for eigenvalues in descending order
for k = m:-1:1
% First bisection of interval (eValMin,eValMax)
eVal = (eValMax + eValMin)/2;
h = (evalMax - eValMin)/2;
for i = 1:100
% Find number of eigenvalues less than eVal
num_eVals = count_eVals(c,d,eVal);
% Bisect again & find the half containing eVal
h = h/2;
if num_eVals < k ; eVal = eVal + h;
elseif num_eVals > k ; eVal = eVal - h;
else; break
end
end
% If eigenvalue located, change upper limit of
% search and record result in {r}
ValMax = eVal; r(k+1l) = eVal;
end

EXAMPLE 9.11
Bracket each eigenvalue of the matrix in Example 9.10.

Solution In Example 9.10, we found that all the eigenvalues lie in (0, 8). We now bi-
sect this interval and use the Sturm sequence to determine the number of eigenval-
ues in (0, 4). With A = 4, the sequence is — see Eqgs. (9.49)

P@4) =1
P4 =4—-4=0
P(4) = (4 —4)(0) — 2°(1) = —4

Py(4) = (5—4)(—4) — 22(0) = —4

Since a zero value is assigned the sign opposite to that of the preceding member, the
signs in this sequence are (4, —, —, —). The one sign change shows the presence of
one eigenvalue in (0, 4).
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Next, we bisect the interval (4, 8) and compute the Sturm sequence with A = 6:

6 =1

P6)=4—-6=-2

Py(6) = (4—6)(—2) —2°(1) =0
Py(6) = (5—-6)(0) —2*(-2) =8

In this sequence the signs are (+, —, +, +), indicating two eigenvalues in (0, 6).
Therefore

Computation of Eigenvalues

Once the desired eigenvalues are bracketed, they can be found by determining the
roots of P,(A) = 0 with bisection or Ridder’s method.

B eigenvals3

The function eigenvals3 computes m smallest eigenvalues of a symmetric tridiag-
onal matrix with the method of bisection.

function eVals = eigenvals3(c,d,m)
% Computes the smallest m eigenvalues of A = [c\d\c].
% USAGE: eVals = eigenvals3(c,d,m).

eVals = zeros(m,1);
r = eValBrackets(c,d,m); % Bracket eigenvalues
for i=1:m
% Solve |A - eVal*I| for eVal by bisection
eVals(i) = bisect(@func,r(i),r(i+l));

end

function f = func(eVal);

% Returns |A - eVal*I| (last element of Sturm seq.)
p = sturmSeq(c,d,eVal);

f = p(length(p));

end

end
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EXAMPLE 9.12
Determine the three smallest eigenvalues of the 100 x 100 matrix

2 -1 0 0

-1 2 -1 0

A= 0 -1 2 0
0 0 -1 2

Solution

% Example 9.12 (Eigenvals. of tridiagonal matrix)
m =3; n = 100;

d

c = -ones(n-1,1);

ones(n,1)*2;

eigenvalues = eigenvals3(c,d,m)
The result is

>> eigenvalues =
9.6744e-004 3.8688e-003 8.7013e-003

Computation of Eigenvectors

If the eigenvalues are known (approximate values will be good enough), the best
means of computing the corresponding eigenvectors is the inverse power method
with eigenvalue shifting. This method was discussed before, but the algorithm did
not take advantage of banding. Here we present a version of the method written for
symmetric tridiagonal matrices.

B invPower3

This function is very similar to invPower listed in Section 9.3, but executes much
faster since it exploits the tridiagonal structure of the matrix.

function [eVal,eVec] = invPower3(c,d,s,maxIter,tol)

% Computes the eigenvalue of A =[c\d\c] closest to s and
% the associated eigevector by the inverse power method.
% USAGE: [eVal,eVec] = invPower3(c,d,s,maxIter,tol).

% maxIter = limit on number of iterations (default is 50).

% tol = error tolerance (default is 1.0e-6).

if nargin < 5; tol = 1.0e-6; end
if nargin < 4; maxIter = 50; end
n = length(d);
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e =c; d=d - s; % Apply shift to diag. terms of A
[c,d,e] = LUdec3(c,d,e); % Decompose A* = A - sI
x = rand(n,1); % Seed x with random numbers

xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x
for i = l:maxIter
x01d = x; % Save current x
x = LUsol3(c,d,e,x); % Solve A*x = x01d
xMag = sqrt(dot(x,x)); x = x/xMag; % Normalize x
xSign = sign(dot(x01ld,x)); % Detect sign change of x
X = X*x8ign;
% Check for convergence
if sgrt(dot(x0ld - x,x01d - x)) < tol
eVal = s + xSign/xMag; eVec = X;
return
end
end

error(’Too many iterations’)
EXAMPLE 9.13
Compute the 10th smallest eigenvalue of the matrix A given Example 9.12.

Solution The following program extracts the mth eigenvalue of A by the inverse
power method with eigenvalue shifting:

Example 9.13 (Eigenvals. of tridiagonal matrix)

format short e

m = 10

n = 100;

d = ones(n,1)*2; ¢ = -ones(n-1,1);
r = eValBrackets(c,d,m);

s =(r(m) + r(m+l))/2;
[eVal,eVec] = invPower3(c,d,s);

mth_eigenvalue = eVal

The result is

>> m =
10
mth_eigenvalue =
9.5974e-002

EXAMPLE 9.14
Compute the three smallest eigenvalues and the corresponding eigenvectors of the
matrix A in Example 9.5.
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Solution

% Example 9.14 (Eigenvalue problem)

format short e

m = 3;

A=1m[11 2 3 1
2 9 3 5
3 315 4
1 5 4 12
4 2 3 4

17];

eVecMat = zeros(size(A,1),m);
[c,d,P] = householder(A);

eVals = eigenvals3(c,d,m);

for i = 1:m

s = eVals(i)*1.0000001;

[eVal, eVec]

eVecMat(:,1i)

end

invPower3(c,d,s);

= eVec;

eVecMat = P*eVecMat;

eigenvalues = eVals’
eigenvectors = eVecMat
eigenvalues =

4.8739e+000

eigenvectors =
2.6727e-001

5.9491e-001

PROBLEM SET 9.2

1. Use Gerschgorin’s theorem to determine global bounds on the eigenvalues of
-2

8.

7.
-7.4143e-001 4.
-5.0173e-002 -4.
6.
-1.4971e-001 -3.

(@)

2. Use the Sturm sequence to show that

6636e+000 1.

2910e-001 5.
1391e-001 -3.
2986e-001 5.
9556e-002 -6.
2782e-001 -8.

10 4
A= 4 2
-1 3

A=

-1

3
6

5
-2
0
0

-2
4
-1
0

has one eigenvalue in the interval (2, 4).

%

Init.

Householder reduction.
Find lowest m eigenvals.

Compute corresponding

Eigenvecs.

0937e+001

0579e-001
1882e-001
2078e-001
0291e-001
8440e-002

(b)

0
-1
4
-2

eigenvectors by inverse
power method with

eigenvalue shifting.

B =

0
0
-2
5

eigenvector matrix.

e b (55ke annd - e 3590l - I e ol

4 2
2 5
|2 3

of orig. A.

3
4
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3. Bracket each eigenvalue of

4 -1 0
A=|-1 4 -1
0 -1 4
4. Bracket each eigenvalue of
6 1 0
A=]|1 8 2
029
5. Bracket every eigenvalue of
-1 0 0
Ao | 1 2 -1 0
-1 2 -1

6. Tridiagonalize the matrix

12 4 3
A= 4 9 3
3 3 15

with Householder’s reduction.
7. Use the Householder’s reduction to transform the matrix

4 =2 1 -1
-2 4 =2 1
1 -2 4 -2
-1 1 -2 4

to tridiagonal form.
8. W Compute all the eigenvalues of

6 2 0 00

25200

A=|(0 2 7 4 0

0 0 461

0 001 3

9. M Find the smallest two eigenvalues of

4 -1 01
A -1 6 -2 0
0 -2 3 2
1 0 2 4
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10. ® Compute the three smallest eigenvalues of

7 -4 3 -2 1 0
-4 8 -4 3 -2 1
3 4 9 -4 3 -2
-2 3 -4 10 -4 3
1 -2 3 -4 11 -4
0 1 -2 3 -4 12

and the corresponding eigenvectors.
11. MW Find the two smallest eigenvalues of the 6 x 6 Hilbert matrix

1 1/2 1/3 --- 1/6
12 1/3 1/4 .- 1/7
A= |1/3 1/4 1/5 ... 1/8
1/6 1/7 1/8 --- 1/11

Recall that this matrix is ill conditioned.

12. W Rewrite the function evalBrackets so that it will bracket the m largest eigen-
values of a tridiagonal matrix. Use this function to compute the two largest eigen-
values of the Hilbert matrix in Problem 11.

13. m

U, U, U
k Kk k k

m| 3m | 2m—wm-|

The differential equations of motion of the mass—spring system are

k(—2u; + wp) = miy
k(u; — 2up + ug) = 3milp

k(ug — 2L£3) = 2mu3

where u;(t) is the displacement of mass i from its equilibrium position and k is
the spring stiffness. Substituting u;(t) = y; sin wt, we obtain the matrix eigenvalue

problem
2 -1 0||wn e 1 0 0||n
-1 2 -1f|»y»|= e 0 3 0ffy
0 -1 2|| 00 2]

Determine the circular frequencies w and the corresponding relative amplitudes
y; of vibration.
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14.

—>U1 u —=U
k k' k2 kK, !

v m fwivl i el m]

The figure shows n identical masses connected by springs of different stiffnesses.
The equation governing free vibration of the system is Au = mw?u, where o is the

circular frequency and
_kl + ko —k» 0 0 cee 0 ]
—ko ko + k3 —k3 0 ce 0
0 —ks k3 + ky —ky cee 0
A= _
0 0 —kn—l knfl +kn _kn
| 0 e 0 0 —kn kn |
Given the spring stiffness array k= [k, k, --- k,]7, write a program that

computes N lowest eigenvalues A = mw? and the corresponding eigenvectors.
Run the program with N = 4 and

T
k= [400 400 400 0.2 400 400 200] KN/m

Note that the system is weakly coupled, k; being small. Do the results make
sense?
15. m

IIIIIIIIIIIII]*X
12 n

The differential equation of motion of the axially vibrating bar is

where u(x, t) is the axial displacement, p represents the mass density, and E is the
modulus of elasticity. The boundary conditions are u(0, ) = v/(L, t) = 0. Letting
u(x, t) = y(x) sin wt, we obtain

/!

Y = —w2%y y(0) =y'(L)=0
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The corresponding finite difference equations are

2

e b 55k annd - e 35900 - I e ol

-1 0 0 0 »n N
-1 2 -1 0 0 V2 V2
0 -1 2 -1 0 Vs wI\>p | W3
G R
0 0 -1 2 =11y Yn-1
. 0 0 0 -1 L v | | Vn/2 |

16.

(a) If the standard form of these equations is Hz = Az, write down H and the
transformation matrix P in y = Pz. (b) Compute the lowest circular frequency of
the bar with n = 10, 100, and 1000 utilizing the module inversePower3. Nofe:
that the analytical solution is w; = n/E/p/ (2L).

|
U
P ‘ 1 2 n-1 n P
e ——— T T T I J———— — X

T

A |

The simply supported column is resting on an elastic foundation of stiffness k
(N/m per meter length). An axial force P acts on the column. The differential
equation and the boundary conditions for the lateral displacement u are

P k
(4) Iy ~u=0
u +Elu +Elu

w0) =u’(0)=u(l)=u"(L) =0
Using the mesh shown, the finite difference approximation of these equations is
G+a)uy —4up +uz3 = 22U — wp)
—du; + 6+ a)up —4us + Uy = A(—uy + 2up + Ug)

u — 4u2 + (6—|—a)u3 — 4Lt4 + U5 = )»(—Ltg + 2u3 — u4)

Up-3 — 4Up o+ (6 + o)y 1 — 4Uy = M—Up_2 + dUy_1 — Uy)
Up—2 —4up1 + O+ a)uy = AM—uy—1 + 2up

where
_ kht 1 kL*

_ _ PR? 1 PI?
T EI T (n+ D% EI

T EI  (n+1)? EI
Write a program that computes the lowest three buckling loads P and the corre-
sponding mode shapes. Run the program with kL*/(EI) = 1000 and n = 25.
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Symmetric Matrix Eigenvalue Problems

17. W Find smallest five eigenvalues of the 20 x 20 matrix

2 10 0 - 0 1]
121 0 00
012 1 - 00
A=
00 1 2 10
00 0 1 21
10 0 0 1 2]

Note: This is a difficult matrix that has many pairs of double eigenvalues.
18.

When the depth/width ratio of a beam is large, lateral buckling may occur.
The differential equation that governs lateral buckling of the cantilever beam
shown is

%erz(l—%fe:o

where 6 is the angle of rotation of the cross section and
yZ _ P2 L2
(GN(EL)
GJ = torsional rigidity
EI, = bending rigidity about the z-axis
The boundary conditions are 6|,—o = 0 and df/dx|,—; = 0. Using the finite dif-

ference approximation of the differential equation, determine the buckling load
P,;. The analytical solution is

V(GN(EL)

P, =4.013 72
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9.5 Eigenvalues of Symmetric Tridiagonal Matrices

MATLAB Functions

MATLAB’s function for solving eigenvalue problems is eig. Its usage for the standard
eigenvalue problem Ax = Ax is

eVals = eig(A) returns the eigenvalues of the matrix A (A can be unsymmetric).

[X,D] = eig(A) returns the eigenvector matrix X and the diagonal matrix D that
contains the eigenvalues on its diagonal; that is, evals = diag(D).

For the nonstandard form Ax = ABx, the calls are

eVals eig(A,B)

[X,D]

eig(A,B)

The method of solution is based on Schur’s factorization: PAP= T, where P and
T are unitary and triangular matrices, respectively. Schur’s factorization is not cov-
ered in this text.
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Find x that minimizes F(x) subject to g(x) = 0, h(x) <0

Introduction

Optimization is the term often used for minimizing or maximizing a function. It is
sufficient to consider the problem of minimization only; maximization of F(x) is
achieved by simply minimizing — F(x). In engineering, optimization is closely related
to design. The function F(x), called the merit function or objective function, is the
quantity that we wish to keep as small as possible, such as the cost or weight. The
components of x, known as the design variables, are the quantities that we are free
to adjust. Physical dimensions (lengths, areas, angles, etc.) are common examples of
design variables.

Optimization is a large topic with many books dedicated to it. The best we can do
in limited space is to introduce a few basic methods that are good enough for prob-
lems that are reasonably well behaved and do not involve too many design variables.

The algorithms for minimization are iterative procedures that require starting
values of the design variables x. If F(x) has several local minima, the initial choice of
x determines which of these will be computed. There is no guaranteed way of finding
the global optimal point. One suggested procedure is to make several computer runs
using different starting points and pick the best result.

More often than not, the design is also subjected to restrictions, or constraints,
which may have the form of equalities or inequalities. As an example, take the mini-
mum weight design of a roof truss that has to carry a certain loading. Assume that the
layout of the members is given, so that the design variables are the cross-sectional
areas of the members. Here the design is dominated by inequality constraints that
consist of prescribed upper limits on the stresses and possibly the displacements.

The majority of available methods are designed for unconstrained optimization,
where no restrictions are placed on the design variables. In these problems the min-
ima, if they exit, are stationary points (points where gradient vector of F(x) vanishes).
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10.1 Introduction

In the more difficult problem of constrained optimization the minima are usually lo-
cated where the F(x) surface meets the constraints. There are special algorithms for
constrained optimization, but they are not easily accessible due to their complexity
and specialization. One way to tackle a problem with constraints is to use an uncon-
strained optimization algorithm, but modify the merit function so that any violation
of constrains is heavily penalized.

Consider the problem of minimizing F(x) where the design variables are subject
to the constraints

gx) =0, i=12,...,m
hjx) <0, j=12,...,n

We choose the new merit function be

F'x) = Fx) + n P(x) (10.1a)
where
PX = [g@1°+ Y {max[0, )]}’ (10.1b)
i=1 j=1

is the penalty function and u is a multiplier. The function max(a, b) returns the larger
of a and b. It is evident that P(x) = 0 if no constraints are violated. Violation of a
constraint imposes a penalty proportional to the square of the violation. Hence the
minimization algorithm tends to avoid the violations, the degree of avoidance being
dependent on the magnitude of . If 1 is small, optimization will proceed faster be-
cause there is more “space” in which the procedure can operate, but there may be
significant violation of constraints. On the other hand, large x can result poorly con-
ditioned procedure, but the constraints will be tightly enforced. It is advisable to run
the optimization program with x that is on the small side. If the results show unac-
ceptable constraint violation, increase n and run the program again, starting with the
results of the previous run.

An optimization procedure may also become ill conditioned when the con-
straints have widely different magnitudes. This problem can be alleviated by scaling
the offending constraints; that is, multiplying the constraint equations by suitable
constants.

Itis not always necessary (or even advisable) to employ an iterative minimization
algorithm. In problems where the derivatives of F(x) can be readily computed and
inequality constraints are absent, the optimal point can always be found directly by
calculus. For example, if there are no constraints, the coordinates of the point where
F(x) is minimized are given by the solution of the simultaneous (usually nonlinear)
equations V F(x) = 0. The direct method for finding the minimum of F(x) subject to
equality constraints g;(x) =0,i =1, 2, ..., mis to form the function

F*(x, 1) = F&) + ) _ 7igX) (10.2a)
i=1
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and solve the equations
VF*x)=0 gx) =0, i=12,...,m (10.2b)

for x and A;. The parameters A; are known as the Lagrangian multipliers. The direct
method can also be extended to inequality constraints, but the solution of the result-
ing equations is not straightforward due to lack of uniqueness.

Minimization Along a Line

f(x)

Global minimu

| ——Constraint boundarie
[ d X

Figure 10.1. Example of local and global minima.

Consider the problem of minimizing a function f(x) of a single variable x with the
constraints ¢ < x < d. A hypothetical plot of the function is shown in Fig. 10.1. There
are two minimum points: a stationary point characterized by f’(x) = 0 that repre-
sents a local minimum, and a global minimum at the constraint boundary. It appears
that finding the global minimum is simple. All the stationary points could be located
by finding the roots of df/dx = 0, and each constraint boundary may be checked for
a global minimum by evaluating f(c) and f(d). Then why do we need an optimization
algorithm? We need it if f(x) is difficult or impossible to differentiate; for example, if
fis represented by a complex computer algorithm.

Bracketing

Before a minimization algorithm can be entered, the minimum point must be brack-
eted. The procedure of bracketing is simple: start with an initial value of x; and move
downhill computing the function at x;, x,, X3, ..., until we reach the point x,, where
f(x) increases for the first time. The minimum point is now bracketed in the interval
(Xn—2, X,). What should the step size h; = x;.; — x; be? It is not a good idea to have
a constant k; since it often results in too many steps. A more efficient scheme is to
increase the size with every step, the goal being to reach the minimum quickly, even
if its resulting bracket is wide. In our algorithm, we chose to increase the step size by
a constant factor; that is, we use h;.1 = ch;, ¢ > 1.
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10.2 Minimization Along a Line

Golden Section Search

The golden section search is the counterpart of bisection used in finding roots of
equations. Suppose that the minimum of f(x) has been bracketed in the interval
(a, b) of length h. To telescope the interval, we evaluate the function at x; = b — Rh
and x, = a + Rh, as shown in Fig. 10.2(a). The constant Ris to be determined shortly.
If i > f; asindicated in the figure, the minimum lies in (x;, b); otherwise, it is located
in (a, x»).

fx) oRh-h
f f
’ Rh
Rh
X
a X h X, b
(a)
f(x) 7
R/,,’
. RAh
a X X% b~
hl

(b)

Figure 10.2. Golden section telescoping.

Assuming that fi > f,, we seta < x; and x; < X, which yields a new interval (a, b)
of length I = RA, as illustrated in Fig. 10.2(b). To carry out the next telescoping op-
eration we evaluate the function at x, = a + Rl and repeat the process.

The procedure works only if Figs. 10.1(a) and 10.1(b) are similar; that is, if the
same constant R locates x; and x, in both figures. Referring to Fig. 10.2(a), we note
that x, — x; = 2Rh — h. The same distance in Fig. 10.2(b) is x; —a = I’ — RI. Equat-
ing the two, we get

2Rh—h=H — RI
Substituting #' = Rh and cancelling hyields

2R—1=R(1- R
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the solution of which is the golden ratio.??

_-1++5
2

Note that each telescoping decreases the interval containing the minimum by
the factor R, which is not as good as the factor is 0.5 in bisection. However, the golden
search method achieves this reduction with one function evaluation, whereas two
evaluations would be needed in bisection.

The number of telescopings required to reduce h from |b — a| to an error toler-
ance ¢ is given by

R =0.618033989... (10.3)

{b—a|R”=8

which yields

_Ine/|b-a]) €
n=—— & =—2078087In b—al (10.4)

B goldBracket

This function contains the bracketing algorithm. For the factor that multiplies suc-
cessive search intervals we chose c =1 + R.

function [a,b] = goldBracket(func,x1l,h)
% Brackets the minimum point of f(x).
% USAGE: [a,b] = goldBracket(func,xStart,h)

% INPUT:

% func = handle of function that returns f(x).

% x1 = starting value of x.

% h = initial step size used in search (default = 0.1).
% OUTPUT:

% a, b = limits on x at the minimum point.

if nargin < 3: h = 0.1; end
c = 1.618033989;
f1 = feval(func,x1l);
x2 = X1 + h; f2 = feval(func,x2);
% Determine downhill direction & change sign of h if needed.
if f2 > f1
h = -h;
x2 = x1 + h; £f2 = feval(func,x2);

% Check if minimum is between x1 - h and x1 + h

22 Ris the ratio of the sides of a “golden rectangle,” considered by ancient Greeks to have the perfect
proportions
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if f2 > f1
a =x2; b =x1 - h; return
end
end
% Search loop
for i = 1:100

h = c*h;
x3 = x2 + h; £f3 = feval(func,x3);
if £f3 > f2

a =x1; b = x3; return
end
x1 = x2; f1 = £2; x2 = x3; f2 = £3;
end

error(’goldbracket did not find minimum’)

B goldSearch

This function implements the golden section search algorithm.

function [xMin,fMin] = goldSearch(func,a,b,tol)

% Golden section search for the minimum of f(x).

% The minimum point must be bracketed in a <= x <= b.
% USAGE: [xMin,fMin] = goldSearch(func,xStart,h)

% INPUT:

% func = handle of function that returns f(x).

% a, b = limits of the interval containing the minimum.
% tol = error tolerance (default is 1.0e-6).

% OUTPUT:

% fMin = minimum value of f(x).

% xMin = value of x at the minimum point.

if nargin < 4; tol = 1.0e-6; end

nIter = ceil(-2.078087*log(tol/abs(b-a))); % Eq. (10.4)
R = 0.618033989;

C=1.0 - R;

% First telescoping

x1 = R*a +C*b;

x2 = C*a +R*b;

f1
f2
% Main loop

feval (func,x1);

feval (func,x2);

for i =1:nIter
if f1 > f2
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a =x1; x1 = x2; f1 = £2;
x2 = C*¥a + R*Db;
f2 = feval(func,x2);
else
b = x2; x2 = x1; f2 = f1;
x1 = R*a + C*b;
f1l = feval(func,x1l);
end
end
if f1 < £2; fMin = fl1; xMin = x1;

else; fMin = f2; xMin = x2;

end

EXAMPLE 10.1
Use goldSearch to find x that minimizes

flx) = 1.6x° + 3x* — 2x
subject to the constraint x > 0. Check the result by calculus.

Solution This is a constrained minimization problem. The minimum of f(x) is ei-
ther a stationary point in x > 0, or it is located at the constraint boundary x = 0.
We handle the constraint with the penalty function method by minimizing f(x) +
u [max(0, —x)]>.

Starting at x = 1 (a rather arbitrary choice) and using . = 1, we arrive at the fol-
lowing program:

% Example 10.1 (golden section minimization)
mu=1.0; x =1.0
func = @(x) 1.6*x"3 + 3.0*x"2 - 2.0%*x
+ mu*max(0.0,-x)"2;
[a,b] = goldBracket(func,x);
[xMin,fMin] = goldSearch(func,a,b)

The output from the program is

>> xMin =
0.2735

fMin =
-0.2899

Since the minimum was found to be a stationary point, the constraint was not
active. Therefore, the penalty function was superfluous, but we did not know that at
the beginning.
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Check
The locations of stationary points are obtained by solving

fi(x) =48x*+6x—2=0

The positive root of this equation is x = 0.2735. As this is the only positive root, there
are no other stationary points in x > 0 that we must check out. The only other possi-
ble location of a minimum is the constraint boundary x = 0. But here f(0) = 0, which
is larger than the function at the stationary point, leading to the conclusion that the
global minimum occurs at x = 0.273 5.

EXAMPLE 10.2

a

o |
| | c
y /oL TLY
I C \
| | d
e
b ‘ a ‘ b ‘ X
| 5 |

The trapezoid shown is the cross section of a beam. It is formed by removing the top
from a triangle of base B = 48 mm and height H = 60 mm. The problem is to find the
height y of the trapezoid that maximizes the section modulus

S= 5C/C

where I; is the second moment of the cross-sectional area about the axis that passes
through the centroid C of the cross section. By optimizing the section modulus, we
minimize the maximum bending stress o max = M/ S in the beam, M being the bend-
ing moment.

Solution This is an unconstrained optimization problem. Considering the area of the
trapezoid as a composite of a rectangle and two triangles, the section modulus is
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found through the following sequence of computations:

Base of rectangle a=BH-y)/H

Base of triangle b= (B—-a)/2

Area A=(B+a)y/2

First moment of area about x-axis Q.= (ay)y/2+2(by/2)y/3
Location of centroid d= Q:/A

Distance involved in S c=y—d

Second moment of area about x-axis | I, = ay®/3 + 2 (by*/12)
Parallel axis theorem L =1, — Ad?

Section modulus S=1Iz/c

We could use the formulas in the table to derive S as an explicit function of y, but
that would involve a lot of error-prone algebra and result in an overly complicated
expression. It makes more sense to let the computer do the work.

The program we used is listed below. As we wish to maximize S with a minimiza-
tion algorithm, the merit function is — S. There are no constraints in this problem.

% Example 10.2 (Maximizing with golden section)
yStart = 60.0;

[a,b] = goldBracket(@fex10_2,yStart);
[yopt,Sopt] = goldSearch(@fex10_2,a,b);
fprintf(’optimal y = %7.4f\n’,yopt)
fprintf(’optimal S = %7.2f’,-Sopt)

The function that computes the section modulus is

function S = fex10_2(y)

% Function used in Example 10.2
48.0; H = 60.0;

= B*(H - y)/H; b = (B - a)/2.0;
(B + a)*y/2.0;

(a*y~2)/2.0 + (b*y~"2)/3.0;
Q/A; ¢ =y - d;

(a*y~"3)/3.0 + (b*y"3)/6.0;
Ibar = I - A*d"2; S = -Ibar/c

H o o » o W
nmn 1

Here is the output:

optimal y = 52.1763
optimal S = 7864.43
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10.3 Powell’s Method

The section modulus of the original triangle is 7200; thus, the optimal section
modulus is a 9.2% improvement over the triangle. There is no way to check the re-
sult by calculus without going through the tedious process of deriving the expression
for S(y).

Powell's Method
Introduction

We now look at optimization in n-dimensional design space. The objective is to min-
imize F(x), where the components of x are the n-independent design variables. One
way to tackle the problem is to use a succession of one-dimensional minimizations
to close in on the optimal point. The basic strategy is

e Choose a point X in the design space.
e loopwithi=1,2,3,...

— Choose a vector v;.
- Minimize F(x) along the line through x;_; in the direction of v;. Let the mini-
mum point be x;.

- If|x; — x;_1| < ¢ exitloop

e endloop

The minimization along a line can be accomplished with any one-dimensional
optimization algorithm (such as the golden section search). The only question left
open is how to choose the vectors v;.

Conjugate Directions

Consider the quadratic function

1
Fx)=c— Z bix; + 3 Z ZAijxixj
i i J
T. 1 T
= c—blx+ x"Ax (10.5)
Differentiation with respect to x; yields
oF
87.)6,' =—b; + ZA,-jxj

J

which can be written in vector notation as
VF =—-b+Ax (10.6)

where V F is called the gradient of F.
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Now consider the change in the gradient as we move from point X, in the direc-
tion of a vector u. The motion takes place along the line

X =Xg + su

where s is the distance moved. Substitution into Eq. (10.6) yields the expression for
the gradient along u:

VFlgyrsu =—b+AXo+su) = VF|; +sAu

Note that the change in the gradient is s Au. If this change is perpendicular to a vector
v; that is, if

viAu=0 (10.7)

the directions of u and v are said to be mutually conjugate (noninterfering). The im-
plication is that once we have minimized F(x) in the direction of v, we can move
along u without ruining the previous minimization.

For a quadratic function of n-independent variables it is possible to construct
n mutually conjugate directions. Therefore, it would take precisely # line minimiza-
tions along these directions to reach the minimum point. If F(x) is not a quadratic
function, Eq. (10.5) can be treated as a local approximation of the merit function, ob-
tained by truncating the Taylor series expansion of F(x) about x, (see Appendix Al):

1
F(x) ~ F(Xo) + V F(xo) (X — Xo) + E(x — Xo) "TH(xp) (x — X)

Now the conjugate directions based on the quadratic form are only approximations,
valid in the close vicinity of xy. Consequently, it would take several cycles of n line
minimizations to reach the optimal point.

Powell’s Algorithm

Powell’s method is a very popular means of successive minimizations along conju-
gate directions. The algorithm is:

e Choose a point x, in the design space.

e Choose the starting vectors v;, 1, 2, ..., n (the usual choice is v; = e;, where e; is
the unit vector in the x;-coordinate direction).
e cycle

- dowithi=1,2,...,n
* Minimize F(x) along the line through x;_; in the direction of v;. Let the min-
imum point be x;.

- enddo
- Vu41 < Xg — X, (this vector can be shown to be conjugate to v, produced in
the previous cycle)
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— Minimize F(x) along the line through x, in the direction of v,,;;. Let the mini-
mum point be X, 1.

— if X411 — Xg| < ¢ exitloop

- dowithi=1,2,...,n
* v; < Vi (v is discarded, the other vectors are reused)

- enddo

e end cycle

Powell demonstrated that the vectors v,;; produced in successive cycles are mu-
tually conjugate, so that the minimum point of a quadratic surface is reached in pre-
cisely n cycles. In practice, the merit function is seldom quadratic, but as long as it can
be approximated locally by Eq. (10.5), Powell’s method will work. Of course, it usually
takes more than n cycles to arrive at the minimum of a nonquadratic function. Note
that it takes n line minimizations to construct each conjugate direction.

Figure 10.3(a) illustrates one typical cycle of the method in a two-dimensional
design space (n = 2). We start with point X, and vectors v; and v,. Then we find the
distance s; that minimizes F(xy + svi), finishing up at point x; = x¢ + §;v;. Next, we
determine s, that minimizes F(x; + sv,) which takes us to X, = X; + s»v». The last
search direction is v3 = X, — X. After finding s; by minimizing F(x, + sv3) we get to
X3 = Xg + S3V3, completing the cycle.

R (%) R

(@) (b)

Figure 10.3. The method of Powell.

Figure 10.3(b) shows the moves carried out in two cycles superimposed on the
contour map of a quadratic surface. As explained before, the first cycle starts at point
By and ends up at P5. The second cycle takes us to Ps, which is the optimal point. The
directions Py P; and P; P; are mutually conjugate.



www.MatlabKar.com e b (3l 4t - e 35901 - IS e ol

Introduction to Optimization

Powell’s method does have a major flaw that has to be remedied - if F(x) is not
a quadratic, the algorithm tends to produce search directions that gradually become
linearly dependent, thereby ruining the progress toward the minimum. The source
of the problem is the automatic discarding of v; at the end of each cycle. It has been
suggested that it is better to throw out the direction that resulted in the largest de-
crease of F(x), a policy that we adopt. It seems counter-intuitive to discard the best
direction, but it is likely to be close to the direction added in the next cycle, thereby
contributing to linear dependence. As a result of the change, the search directions
cease to be mutually conjugate, so that a quadratic form is not minimized in 7 cycles
any more. This is not a significant loss, since in practice F(x) is seldom a quadratic
anyway.

Powell suggested a few other refinements to speed up convergence. Since they
complicate the book-keeping considerably, we did not implement them.

B powell

The algorithm for Powell’s method is listed below. It utilizes two arrays: df contains
the decreases of the merit function in the first n moves of a cycle, and the matrix u
stores the corresponding direction vectors v;(one vector per column).

function [xMin,fMin,nCyc] = powell(func,x,h,tol)

% Powell’s method for minimizing f(x1,x2,...,xn).
% USAGE: [xMin,fMin,nCyc] = powell(h,tol)
% INPUT:

% func = handle of function that returns f.

% x = starting point

% h = initial search increment (default = 0.1).
% tol = error tolerance (default = 1.0e-6).

% OUTPUT:

% xMin = minimum point

% fMin = minimum value of f

% nCyc = number of cycles to convergence

if nargin < 4; tol = 1.0e-6; end
if nargin < 3; h = 0.1; end

if size(x,2) > 1; x = xX’; end % x must be column vector

n = length(x); % Number of design variables
df = zeros(n,1l); % Decreases of f stored here
u = eye(n); % Columns of u store search directions v
for j = 1:30 % Allow up to 30 cycles
x01d = x;
fOold = feval(func,x01d);
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% First n line searches record the decrease of f
for i = 1:n
v = u(l:n,i);
[a,b] = goldBracket(@fLine,0.0,h);
[s,fMin] = goldSearch(@fLine,a,b);
df(i) = fold - fMin;
f0ld = fMin;
X = X + S*V;
end
% Last line search in the cycle
v = x - x01d;
[a,b] = goldBracket(@fLine,0.0,h);
[s,fMin] = goldSearch(@fLine,a,b);
X = X + S*V;
% Check for convergence
if sgrt(dot(x-x01d,x-x01d)/n) < tol
xMin = x; nCyc = Jj; return
end
% Identify biggest decrease of f & update search
% directions
iMax = 1; dfMax = df(1);
for i = 2:n
if df(i) > dfMax
iMax = i; dfMax = df(i);
end
end
for i = iMax:n-1
u(l:n,i) = u(l:n,i+1);
end
u(l:n,n) = v;
end

error(’Powell method did not converge’)

function z = fLine(s) % F in the search direction v
z = feval(func,x+s*v);
end

end

The nested function fLine(s) evaluates the merit function func along the
line that represents the search direction, s being the distance measured along the
line.
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EXAMPLE 10.3
Find the minimum of the function?®
F=100(y — x*)> + (1 — x)?

with Powell’s method starting at the point (—1, 1). This function has an interesting
topology. The minimum value of F occurs at the point (1, 1). As seen in the figure,
there is a hump between the starting and minimum points which the algorithm must
negotiate.

1000
800

Solution The script file that solves this unconstrained optimization problem is

% Example 10.3 (Powell’s method of minimization)
func = @(x) 100.0*(x(2) - x(1)"2)"2 + (1.0 -x(1))"2;
[xMin, fMin,numCycles] = powell(func,[-1,1])

Here are the results:

>> xMin =
1.0000
1.0000
fMin =
1.0072e-024
numCycles =
12

23 From Shoup, T.E., and Mistree, E, Optimization Methods with Applications for Personal Comput-
ers, Prentice-Hall, New York, 1987.
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Check
In this case, the solution can also be obtained by solving the simultaneous equations
oF _ 400(y — x9)x—2(1-x) =0
ax ¥ N
oF
— =200(y—x*) =0
dy

The second equation gives us y = x?, which upon substitution in the first equation
yields —2(1 — x) = 0. Therefore, x = y = 1 is the minimum point.

EXAMPLE 10.4
Use powell to determine the smallest distance from the point (5, 8) to the curve
xy = 5. Use calculus to check the result.

Solution This is an optimization problem with an equality constraint:

minimize F(x, y) = (x — 5)% + (y — 8)2

subjecttoxy —5=0

The following script file uses Powell’s method with penalty function:

% Example 10.4 (Powell’s method of minimization)
mu = 1.0;
func = @(x) (x(1) - 5.0)72 + (x(2) - 8.0)"2

+ mu*(x(1)*x(2) - 5.0)7°2;
xStart = [1.0;5.0];
[x,f,nCyc] = powell(func,xStart);
fprintf(’Intersection point = %8.5f %8.5f\n’,x(1),x(2))
xy = x(1)*x(2);
fprintf(’Constraint x*y = %8.5f\n’,xy)
dist = sqrt((x(1l) - 5.0)72 + (x(2) - 8.0)72);
fprintf(’Distance = %8.5f\n’,dist)
fprintf(’Number of cycles = %2.0f\n’,nCyc)

As mentioned before, the value of the penalty function multiplier 1 (called mu in
the program) can have profound effect on the result. We chose « =1 in the initial
run with the following result:

>> Intersection point = 0.73307 7.58776
Constraint x*y = 5.56234
Distance = 4.28680

Number of cycles = 5
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The small value of i favored stability of the minimization process over the ac-
curacy of the final result. Since the violation of the constraint xy = 5 is clearly unac-
ceptable, we ran the program again with 4 = 10000 and changed the starting point
to (0.733 07, 7.587 76), the end point of the first run. The results shown below are now

acceptable.

>>Tntersection point = 0.65561 7.62654
Constraint x*y = 5.00006

Distance = 4.36041

Number of cycles = 4

Could we have used p = 10000 in the first run? In this case, we would be lucky
and obtain the minimum in 17 cycles. Hence we save eight cycles by using two runs.
However, a large u often causes the algorithm to hang up or misbehave in other ways,
so that it is generally wise to start with a small p.

Check
Since we have an equality constraint, the optimal point can readily be found by cal-
culus. The function in Eq. (10.2a) is (here A is the Lagrangian multiplier)

F*(x, ¥, M) = (x = 5)* + (y — 8)* + A(xy — 5)

so that Egs. (10.2b) become

oF =2(x—-5+ry=0
0x
oF =2(y—-8)+rx=0
ay

gx)=xy—-5=0

which can be solved with the Newton-Raphson method (the function newtonRaph-
son2 in Section 4.6). In the program below we used the notationx =[x y a]%.

% Example 10.4 (with simultaneous equations)

func = @(x) [2*(x(1) - 5) + x(3)*x(2);
2%(x(2) - 8) + x(3)*x(1);
x(1)*x(2) - 51;

x = newtonRaphson2(func,[1;5;1])’

The result is

0.6556 7.6265 1.1393
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EXAMPLE 10.5

The displacement formulation of the truss shown results in the following simultane-
ous equations for the joint displacements u:

E 224, + A3 —As As n 0
— —A A —A wl|=|-pP
2\/§L 3 3 3 2

As —As 22A,+ As Us 0

where E represents the modulus of elasticity of the material and A; is the cross-
sectional area of member i. Use Powell’s method to minimize the structural volume
(i.e., the weight) of the truss while keeping the displacement 1, below a given value §.

Solution Introducing the dimensionless variables

u; Es
the equations become
1 2\/2?62 + X3 —X3 X3 4] 0
—— —X3 X3 —X3 %) = -1 (a)
Zﬁ X3 —X3 2\/2?61 + X3 U3 0

The structural volume to be minimized is
P12
V=LA +A+ \/EAg) = ﬁ(xl + X2 + \/EX3)

In addition to the displacement constraint |, | < §, we should also prevent the cross-
sectional areas from becoming negative by applying the constraints A; > 0. Thus the
optimization problem becomes: minimize

F=x1+x+ \/E.Xg
with the inequality constraints

vl <1 x%>0(0=123)
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Note that in order to obtain v, we must solve Egs. (a).
Here is the program:

function examplelO_5

% Example 10.5 (Powell’s method of minimization)

xStart = [1;1;1];

[x,fOpt,nCyc] = powell(@fex10_5,xStart);

fprintf(’x = %8.4f %8.4f %8.4f\n’,x)

fprintf(’v = %8.4f %8.4f %8.4f\n’,u)

fprintf(’Relative weight F = %8.4f\n’ ,x(1)+ x(2)
+ sgrt(2)*x(3))

fprintf(’Number of cycles = %2.0f\n’,nCyc)

function F = fex10_5(x)

mu = 100;
c = 2*sqrt(2);
= [(c*x(2) + x(3)) -x(3) x(3);
-x(3) x(3) -x(3);
x(3) -x(3)  (c*x(1) + x(3))1/c;
b = [0;-1;0];
= gauss(A,b);

F = x(1) + x(2) + sgrt(2)*x(3)
+ mu*((max(0,abs(u(2)) - 1))"2
+ (max(0,-x(1)))"2
+ (max(0,-x(2)))"2
+ (max(0,-x(3)))"2);
end

end

The subfunction fex10_5 returns the penalized merit function. It includes the
code that sets up and solves Egs. (a). The displacement vector v is called u in the
program.

The first run of the program started withx=[1 1 1] T and used u = 100 for
the penalty multiplier. The results were

3.7387 3.7387 5.2873
A -0.2675 -1.0699 -0.2675
Relative weight F = 14.9548
Number of cycles = 10

X

Since the magnitude of v, is excessive, the penalty multiplier was increased to
10000 and the program run again using the output x from the last run as the input.
As seen below, v, is now much closer to the constraint value.
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3.9997 3.9997 5.6564
-0.2500 -1.0001 -0.2500
Relative weight F = 15.9987
Number of cycles = 17

X

v

In this problem the use of © = 10000 at the outset would not work. You are
invited to try it.

Downhill Simplex Method

The downhill simplex method is also known as the Nelder-Mead method. The idea
is to employ a moving simplex in the design space to surround the optimal point
and then shrink the simplex until its dimensions reach a specified error tolerance.
In n-dimensional space a simplex is a figure of n + 1 vertices connected by straight
lines and bounded by polygonal faces. If n = 2, a simplex is a triangle; if n = 3, itis a
tetrahedron.

Hi Hi Hi

Original simplex

Reflection

Expansion

Lo
Contraction Shrinkage

Figure 10.4. A simplex in two dimensions illustrating the allowed moves.

The allowed moves of the simplex are illustrated in Fig. 10.4 for n = 2. By applying
these moves in a suitable sequence, the simplex can always hunt down the minimum
point, enclose it and then shrink around it. The direction of a move is determined by
the values of F(x) (the function to be minimized) at the vertices. The vertex with the
highest value of F is labeled Hi and Lo denotes the vertex with the lowest value. The
magnitude of a move is controlled by the distance d measured from the Hi vertex
to the centroid of the opposing face (in the case of the triangle, the middle of the
opposing side).
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The outline of the algorithm is:

o Choose a starting simplex.
e cycle until d < ¢ (¢ being the error tolerance)

— Try reflection.

* If the new vertex is lower than previous Hi, accept reflection.
* If the new vertex is lower than previous Lo, try expansion.

* If the new vertex is lower than previous Lo, accept expansion.
* If reflection is accepted, start next cycle.

— Try contraction.
* If the new vertex is lower than Hi, accept contraction and start next cycle.
- Shrinkage.
e end cycle

The downhill simplex algorithm is much slower than Powell's method in most
cases, but makes up for it in robustness. It often works in problems where Powell’s
method hangs up.

B downhill

The implementation of the downhill simplex method is given below. The starting
simplex has one of its vertices at x, and the others atx, +e;b i =1, 2, ..., n), where
e; is the unit vector in the direction of the x;-coordinate. The vector X, (called xStart
in the program) and the edge length b of the simplex are input by the user.

function [xMin,fMin,k] = downhill(func,xStart,b,tol)

% Downhill simplex method for minimizing f(x1,x2,...,xn).

% USAGE: [xMin,nCycl] = downhill(func,xStart,b,tol)

% INPUT:

% func = handle of function to be minimized.

% xStart = coordinates of the starting point.

% b = initial edge length of the simplex (default = 0.1).
% tol = error tolerance (default = 1.0e-6).

% OUTPUT:

% xMin = coordinates of the minimum point.
% fMin = minimum value of f

% nCycl = number of cycles to convergence.

if nargin < 4; tol = 1.0e-6; end
if nargin < 3; b = 0.1; end

n

length(xStart); % Number of coords (design variables)

X

zeros(n+1l,n); % Coordinates of the n+l vertices
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f = zeros(n+l,1); % Values of ’'func’ at the vertices
% Generate starting simplex of edge length ’b’
x(1,:) = xStart;
for i = 2:n+1
x(i,:) = xStart;
x(i,i-1) = xStart(i-1) + b;
end
% Compute func at vertices of the simplex
for i = 1:n+1; £(i) = func(x(i,:)); end

% Main loop

for k = 1:500 % Allow at most 500 cycles
% Find highest and lowest vertices
[fLo,iLo]l= min(f); [fHi,iHi] = max(f);

% Compute the move vector d

d = -(n+1)*x(iHi, :);
for i = 1:n+l1; d = d + x(4i,:); end
d = d/n;

% Check for convergence
if sgrt(dot(d,d)/n) < tol
xMin = x(ilo,:); fMin = fLo; return
end
% Try reflection
xNew = x(iHi,:) + 2.0%*d;
fNew = func(xNew);
if fNew <= f(iLo) % Accept reflection
x(iHi, :) = xNew; f(iHi) = fNew;
% Try expansion
xNew = x(iHi,:) + d; fNew = func(xNew);
if fNew <= f(iLo) % Accept expansion
x(iHi,:) = xNew; f(iHi) = fNew;
continue
end
else
if fNew <= f(iHi)
x(iHi,:) = xNew; f(iHi) = fNew;
continue
else
% Try contraction
xNew = x(iHi,:) + 0.5*d; fNew = func(xNew);
if fNew <= f(iHi) % Accept contraction
x(iHi, :) = xNew; f(iHi) = fNew;

continue
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else
% Shrinkage
for i = 1:n+1
if i "= ilo
x(i,:) = 0.5*(x(4d,:) + x(diLo,:));
f(i) = func(x(di,:));
end
end
end
end
end
end % End of main loop

error(’Too many cycles in downhill’)

EXAMPLE 10.6
Use the downhill simplex method to minimize

F =10x% +3x% — 10x1x2 + 2x;

The coordinates of the vertices of the starting simplex are (0, 0), (0, —0.2), and (0.2, 0).
Show graphically the first four moves of the simplex.

Solution The figure shows the design space (the x;-x, plane). The numbers in the
figure are the values of F at the vertices. The move numbers are enclosed in circles.
The starting move (move 1) is a reflection, followed by an expansion (move 2). The
next two moves are reflections. At this stage, the simplex is still moving downhill.
Contraction will not start until move 8, when the simplex has surrounded the optimal
point at (—0.6, —1.0).

—0‘.6 —q.4 -0.2 0
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EXAMPLE 10.7

The figure shows the cross section of a channel carrying water. Use the downhill
simplex to determine /4, b, and 6 that minimize the length of the wetted perimeter
while maintaining a cross-sectional area of 8 m?. (Minimizing the wetted perimeter
results in least resistance to the flow.) Check the answer by calculus.

Solution The cross-sectional area of the channel is
A= % [b+ (b+2htan6)]| h= (b+ htan6)h
and the length of the wetted perimeter is
S=b+2(hsecH)

The optimization problem is to minimize S subject to the constraint A — 8 = 0. Us-
ing the penalty function to take care of the equality constraint, the function to be
minimized is

S* =b+2hsect + u[(b+ htano)h — 8]2

Letting x=[b h 917 and starting with xo =[4 2 017, we arrive at the
following program:

% Example 10.7 (Minimization with downhill simplex)
mu = 10000;
S = @(x) x(1) + 2*x(2)*sec(x(3))

+ mu*((x(1) + x(2)*tan(x(3)))*x(2) - 8)72;
xStart = [4;2;0];
[x,fMin,nCyc] = downhill(S,xStart);
perim = x(1) + 2*x(2)*sec(x(3));
area = (x(1) + x(2)*tan(x(3)))*x(2);
fprintf(’b = %8.4f\n’,x(1))
fprintf(’h = %8.4f\n’,x(2))
fprintf(’theta_in_deg = %8.4f\n’,x(3)*180/pi)
fprintf(’perimeter = %8.4f\n’,perim)
fprintf(’area = %8.4f\n’,area)
fprintf(’number of cycles = %2.0f\n’,nCyc)
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The results are

b = 2.4816

h = 2.1491
theta_in_deg = 30.0000
perimeter = 7.4448
area = 8.0000

number of cycles = 338

Note the large number of cycles — the downhill simplex method is slow, but
dependable.

Check
Since we have an equality constraint, the problem can be solved by calculus with help
from a Lagrangian multiplier. Referring to Egs. (10.2a), we have F = Sand g=A — 8§,
so that

F*= S+ 1A -38)
= b+ 2(hsec) + A[(b+ htan6)h — 8]

Therefore, Egs. (10.2b) become
aF*

— =14+1h=0

T

o F*

oh = 2secO +A(b+2htand) =0
JF*

P = 2hsecOtané + AH’ sec’6 =0

g= b+ htan6)h—-8=0

which can be solved with newtonRaphson?2 as shown below.

% Example 10.7 (with simultaneous equations)

func = @(x) [1 + x(4)*x(2);
2*sec(x(3)) + x(4)*(x(1) + 2*x(2)*tan(x(3)));
x(2)*sec(x(3))*(2*tan(x(3)) + x(4)*x(2)*sec(x(3)));
(x(1) + x(2)*tan(x(3)))*x(2) - 8];

x = newtonRaphson2(func,[4 2 0 1])

The solutionx=(b h 6 A17T

2.4816 2.1491 0.5236 -0.4653
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EXAMPLE 10.8

>

{
d 0 [ 716
v1L : bl ;;2

The fundamental circular frequency of the stepped shaft is required to be higher than
wp (a given value). Use the downhill simplex to determine the diameters d;, and d,
that minimize the volume of the material without violating the frequency constraint.
The approximate value of the fundamental frequency can be computed by solving
the eigenvalue problem (obtainable from the finite element approximation)

[4(d;*+d§) 2d§] [91] _ dyLie? |:4(d12 +d2) —3d22:| [01}

2d3} ady | | 62 105E —3d? 4d; || 02
where
y = mass density of the material
= circular frequency
E = modulus of elasticity
01, 0, = rotations at the simple supports

Solution We start by introducing the dimensionless variables x; = d;/dy, where d is
an arbitrary “base” diameter. As a result, the eigenvalue problem becomes

4(xf+x3) 2x3 || 61 _, 4(xf+xZ) —3x% || 61 @
2x; 4x; || 02 —3x2 4x5 || 02

4y L*e?
~ 105Ed?

where

In the program listed below, we assume that the constraint on the frequency w is
equivalent to A > 0.4.

function examplel0O_8

% Example 10.8 (Downhill method of minimization)
[xOpt, fOpt,nCyc] = downhill(@fex10_8,[1;1]);

x = xOpt

eigenvalue = eVal

Number_of_cycles = nCyc

function F = fex10_8(x)

lambda = 0.4; % Minimum allowable eigenvalue
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A= [4*(x(1)"4 + x(2)74) 2*x(2)74;

2+%x(2)"4 4*x(2)74];
B = [4*(x(1)"2 + x(2)"2) -3*x(2)"2;
-3*x(2)"°2 4*x(2)°2];

H = stdForm(A,B);

eVal = invPower(H,0);

mu = 1.0e6;
F =x(1)"2 + x(2)°2 + mu*(max(0,lambda - eVal)) 2;
end

end

The “meat” of program is the subfunction fex10_8. The constraint variable that
determines the penalty function is the smallest eigenvalue of Eq. (a), called eval in
the program. Although a 2 x 2 eigenvalue problem can be solved easily, we avoid the
programming involved by employing functions that have been already prepared —
stdForm to turn the eigenvalue problem into standard form, and invPower to com-
pute the eigenvalue closest to zero.

The results shown below were obtained with x; = x, = 1 as the staring values and
u = 10° for the penalty multiplier. The downhill simplex method is robust enough to
alleviate the need for multiple runs with increasing .

1.0751 0.7992

eigenvalue =
0.4000

Number_of_cycles =
62

PROBLEM SET 10.1

1. B The Lennard-Jones potential between two molecules is

o]

where ¢ and o are constants, and r is the distance between the molecules. Use
the functions goldBracket and goldSearch to find o /r that minimizes the po-
tential and verify the result analytically.

2. HW One wave-function of the hydrogen atom is

Y = C (27— 180 +20%) e/
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where

o = zr/ay

c—_ ! <Z>2/3
81+/37 \ Ao

z = nuclear charge
ay = Bohr radius

r = radial distance

Find o where v is at a minimum. Verify the result analytically.
3. W Determine the parameter p that minimizes the integral

m
f sin x cos px dx
0

Hint: Use numerical quadrature to evaluate the integral.
4. 1

R =20 R,=36Q
WA M

E=120V gR §R5=1'29‘

a7

YWWWWA WA
R=15Q R,=1.8Q

Kirchoff’s equations for the two loops of the electrical circuit are
Riiy + Rsiy + R — i) = E
Roiy + Ryip + Rsip + R(i; — 1) =0

Find the resistance R that maximizes the power dissipated by R. Hint: Solve
Kirchoff’s equations numerically with one of the functions in Chapter 2.
5. 1

- L

A wire carrying an electric current is surrounded by rubber insulation of outer
radius r. The resistance of the wire generates heat, which is conducted through
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the insulation and convected into the surrounding air. The temperature of the
wire can be shown to be

_q In(r/a) i
T_Zn( k +hr>+T°°

where

q = rate of heat generation in wire = 50 W/m

a = radius of wire = 5 mm

k = thermal conductivity of rubber = 0.16 W/m - K

h = convective heat-transfer coefficient = 20 W/m? - K

T,, = ambient temperature = 280 K

Find r that minimizes T.
6. W Minimize the function

F(x,y) = (x—D*+ (y — 1)?

subject to the constraints x + y > 1 and x > 0.6. Check the result graphically.
7. W Find the minimum of the function

F(x,y) =6x* +y* + xy

in y > 0. Verify the result by calculus.
8. W Solve Problem 7 if the constraint is changed to y < —2.
9. M Determine the smallest distance from the point (1, 2) to the parabola y = x2.
10. m

- 1
i

Determine x that minimizes the distance d between the base of the area shown
and its centroid C.
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11. m

o] H
- —-1|043H
ey Sttt/ |

The cylindrical vessel of mass M has its center of gravity at C. The water in the

vessel has a depth x. Determine x so that the center of gravity of the vessel-water

combination is as low as possible. Use M = 115kg, H= 0.8 m, and r = 0.25 m.
12. m

The sheet of cardboard is folded along the dashed lines to form a box with an

open top. If the volume of the box is to be 1.0 m?, determine the dimensions a

and b that would use the least amount of cardboard. Verify the result by calculus.
13. m

The elastic cord A BC has an extensional stiffness k. When the vertical force P is
applied at B, the cord deforms to the shape A B'C. The potential energy of the
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system in the deformed position is

+k(a+b)8

N k(d+b)8
2a

V=—-Pv
2b

AB BC

where

Sap=vV@a+uw+v:i-a
Spc=vb—-w2+v:->

are the elongations of AB and BC. Determine the displacements uz and v by
minimizing V (this is an application of the principle of minimum potential en-
ergy: a system is in stable equilibrium if its potential energy is at minimum). Use
a=150mm, b =50 mm, k = 0.6 N/mm, and P=5N.

14. m

P =50 kN

Each member of the truss has a cross-sectional area A. Find A and the angle 6
that minimize the volume

Y
" cosé

of the material in the truss without violating the constraints

o < 150 MPa d <5mm

where
o= - = stress in each member
2A sin6
Pb .
§ = ————————— = displacement at the load P
2EA sin 26 sin6

and E = 200 x 10°,
15. W Solve Problem 14 if the allowable displacement is changed to 2.5 mm.
16. &

L=10m L=1.0m YP=10kN
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The cantilever beam of circular cross section is to have the smallest volume pos-
sible subject to constraints

o1 < 180 MPa 02 < 180 MPa § <25 mm

where

8PL
o1 = 5 = maximum stress in left half
Try

4PL

02 = —5 = maximum stress in right half
Tr
2

PL3 (7
3nE rf

1
+ —4> = displacement at free end
)

and E = 200 GPa. Determine r; and r».
17. M Find the minimum of the function

F(x,y,2) =2x* +3y* + 2% + xy + x2— 2y

and confirm the result by calculus.
18. m

F—r—

L o

The cylindrical container has a conical bottom and an open top. If the volume V
of the container is to be 1.0 m3, find the dimensions r, %, and b that minimize the
surface area S. Note that
b
V=nr’(=+h
(5+1)

S=nr <2h+\/m)



www.MatlabKar.com o b g3le s - e o3g0] - I8 e ol

Introduction to Optimization

19. m

\
\
\
|
| P =200 kN
\

P =200 kN

The equilibrium equations of the truss shown are
4 3
01A1+502A2= P 502A2+0'3A3= P

where o; is the axial stress in member i and A; are the cross-sectional areas. The
third equation is supplied by compatibility (geometrical constraints on the elon-
gations of the members):

16 9

—o01 — 50 —03=0

501 2+ 503

Find the cross-sectional areas of the members that minimize the weight of the

truss without the stresses exceeding 150 MPa.
20. m

A cable supported at the ends carries the weights W, and Ws. The potential en-
ergy of the system is

V=-Wy- Wy
=-WL;sin6; — Wr(L;sin6; + L, sin6,)
and the geometric constraints are
Lycos6; + Lycos6, + Ly3cosfs = B

Lisin®; + Lysinf, + L3sinf; = H
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The principle of minimum potential energy states that the equilibrium configu-
ration of the system is the one that satisfies geometric constraints and minimizes
the potential energy. Determine the equilibrium values of 6, 6,, and 63 given
that Ly =12m, L, =15m, L3=1.0m, B=35m, H=0, W =20 kN, and
W, = 30 kN.

21.

2P
<-p
L L

® @ @
30° 30°

The displacement formulation of the truss results in the equations

E | 3A1+343 VBAI+BAs |[|u| | P
4L \/§A1+\/§A3 A1+ 8A; + Az v| |2P

where E is the modulus of elasticity, A; is the cross-sectional area of member
i, and u, v are the displacement components of the loaded joint. Letting A; = As
(a symmetric truss), determine the cross-sectional areas that minimize the struc-
tural volume without violating the constraints u < § and v < §. Hint: Nondimen-
sionalize the problem as in Example 10.5.

22. W Solve Problem 21 if the three cross-sectional areas are independent.

23. W A beam of rectangular cross section is cut from a cylindrical log of diameter d.
Calculate the height # and width b of the cross section that maximize the cross-
sectional moment of inertia I = bh®/12. Check the result by calculus.

MATLAB Functions

x = fmnbnd(@func,a,b) returns x that minimizes the function func of a single
variable. The minimum point must be bracketed in (a,b). The algorithm used
is Brent’s method that combines golden section search with quadratic interpo-
lation. It is more efficient than goldSearch that uses just the golden section
search.

x = fminsearch(@func,xStart) returns the vector of independent variables
that minimizes the multivariate function func. The vector xStart contains the
starting values of x. The algorithm is the downhill simplex method.

Both of these functions can be called with various control options that set op-
timization parameters (e.g., the error tolerance) and control the display of results.
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There are also additional output parameters that may be used in the function call, as
illustrated in the following example:

% Example 10.4 using MATLAB function fminsearch
mu = 1.0;
func = @(x) (x(1) - 5.0)"2 + (x(2) - 8.0)"2
+ mu*(x(1)*x(2) - 5.0)72;
x = [1.0;5.0];

[x,fmin,exitflag,output] = fminsearch(func,x)

0.7331
7.5878
fmin =
18.6929
exitflag =
1
output =
iterations: 38
funcCount: 72
algorithm: ’'Nelder-Mead simplex direct search’
message: [1x196 char]
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Taylor Series
Function of a Single Variable
Taylor series expansion of a function f(x) about the point x = a is the infinite series

3
fx) = fla) + fa)(x - a)+f”(a + f"(a) (x a) I (A1)

In the special case a = 0 the series is also known as the MacLaurin series. It can be
shown that Taylor series expansion is unique in the sense that no two functions have
identical Taylor series.

Taylor series is meaningful only if all the derivatives of f(x) exist at x = a and the
series converges. In general, convergence occurs only if x is sufficiently close to a;
that is, if |x — a| < ¢, where ¢ is called the radius of convergence. In many cases ¢ is
infinite.

Another useful form of Taylor series is the expansion about an arbitrary value
of x:

fx+h) = flx +f(X)h+f”(x) +f’”(X) (A2)

Since it is not possible to evaluate all the terms of an infinite series, the effect of trun-
cating the series in Eq. (A2) is of great practical importance. Keeping the first n + 1
terms, we have

2 n
fx+h=fx +f/(x)h+f”(x)% +~~~+f(”’(x)% + Ep (A3)

where E,, is the truncation error (sum of the truncated terms). The bounds on the
truncation error are given by Taylor’s theorem:

+l

(n+1)
= " (n i

(A4)

where & is some point in the interval (x, x + h). Note that the expression for E, is
identical to the first discarded term of the series, but with x replaced by &. Since the
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value of ¢ is undetermined (only its limits are known), the most we can get out of
Eq. (A4) are the upper and lower bounds on the truncation error.

If the expression for f"+V (&) is not available, the information conveyed by
Eq. (A4) is reduced to

E, = O(h™™) (A5)

which is a concise way of saying that the truncation error is of the order of h"*!, or
behaves as h"*!. If his within the radius of convergence, then

O™ > O

that is, the error is always reduced if a term is added to the truncated series (this may
not be true for the first few terms).
In the special case n = 1, Taylor’s theorem is known as the mean value theorem:

fx+h=f+fEh x<&<x+h (A6)

Function of Several Variables

If f is a function of the m variables xi, x,, ..., X, then its Taylor series expansion
about the pointx = [x, Xp, ..., X T is
h) = — — hihi+--- A7
fx+h) f(x)+;al zggam]x,ﬁ (A7)
This is sometimes written as
1
fx+h) = fx+Vfx- -h+ EhTH(x)h+--- (A8)

The vector V f is known as the gradient of f and the matrix H is called the Hessian
matrix of f.

EXAMPLE A1
Derive the Taylor series expansion of f(x) = In(x) about x = 1.

Solution The derivatives of f are

1 1 2! 3!
Y _ % _ z _ “4) _
f(x)—; f(x)——; f(X)—E f ——?etc.
Evaluating the derivatives at x = 1, we get
f=1 f'MH=-1 Q=2 fP1) =-3letc.
which upon substitution into Eq. (Al) together with a = 1 yields

—1)2 —1)3 —1)*
ln(x):0+(x—1)—(x2!) +2!(x3!) _3!(’64!) n

e Y12 Y13 Lt
=(x-1) 2(x 1)+3(x 1) 4(x D+
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Use the first five terms of the Taylor series expansion of e* about x = 0:

2 )C3 x4

L R e e

20 3 4

together with the error estimate to find the bounds of e.

Solution

e—1+1+1+1
- 2 6

1
I -
+24+4

65

— + E
24-1-4

W e
Ei= €)= = % 0<t<1

The bounds on the truncation error are

e’ e! e
( 4)m1n 51 120 ( 4)ma.x 51 120
Thus the lower bound on eis
o 85 1 163
ThT24 7120 7 60
and the upper bound is given by
e _ @ €max
T 24 7120
which yields
19 65 325
120 ™ T 24 119
Therefore,
163 325
—<e< —
60 — 119
EXAMPLE A3
Compute the gradient and the Hessian matrix of
fx, ) =Iny/x2 + y?
atthe pointx = -2,y =1.
Solution
of 1 1 2x X of y
x /2P \2yx2+y2) X+y: By xE+)?

T
VG y) =[x/ +1D) y/E )]

V2,1 =[-04 0.2]T
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Pf (P +yH)-xRx) X+

9 x2 (x2 +y2)2 - (x2+y2)2
e

ay? - (x2 + y2)2

*f  9*f —2xy

axdy  dyax (2 + y2)2

—x>4y* —2xy 1
H(x, y) = -
x, y) [—ny x2— 32| 2+ y2)2
He2 1) = [—0.12 0.16:|
0.16 0.12

Matrix Algebra

A matrix is a rectangular array of numbers. The size of a matrix is determined by the
number of rows and columns, also called the dimensions of the matrix. Thus a matrix
of mrows and n columns is said to have the size m x n (the number of rows is always
listed first). A particularly important matrix is the square matrix, which has the same
number of rows and columns.

An array of numbers arranged in a single column is called a column vector, or
simply a vector. If the numbers are set out in a row, the term row vector is used. Thus
a column vector is a matrix of dimensions n x 1 and a row vector can be viewed as a
matrix of dimensions 1 x n.

We denote matrices by boldface, uppercase letters. For vectors we use boldface,
lowercase letters. Here are examples of the notation:

A Ap A b
A=A, Ay Ay b= bz (A9)
Az Az Az bs

Indices of the elements of a matrix are displayed in the same order as its dimen-
sions: the row number comes first, followed by the column number. Only one index
is needed for the elements of a vector.

Transpose

The transpose of a matrix A is denoted by A” and defined as

The transpose operation thus interchanges the rows and columns of the matrix. If
applied to vectors, it turns a column vector into a row vector and vice versa. For
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example, transposing A and b in Eq. (A9), we get

Ay Ay Az
AT=|Ap An A b’ = [bl b, bs]
Az Axz Ass

An n x n matrix is said to be symmerric if AT = A. This means that the elements
in the upper triangular portion (above the diagonal connecting A;; and A,;,) of a
symmetric matrix are mirrored in the lower triangular portion.

Addition
The sum C = A + B of two m x n matrices A and B is defined as
Cij=Aij+Bi', i=12,....,m j=1,2,...,l’l (A10)

Thus the elements of C are obtained by adding elements of A to the elements of B.
Note that addition is defined only for matrices that have the same dimensions.

Multiplication

The scalar or dot product c = a - b of the vectors a and b, each of size m, is defined as
m

c=Y_ acbx (Al1)
k=1

It can also be written in the form ¢ = a’b.
The matrix product C = AB of an [ x m matrix A and an m x n matrix B is
defined by

m
Cj=) AuBy, i=12,...,L j=12..,n (A12)
k=1
The definition requires the number of columns in A (the dimension m) to be equal to
the number of rows in B. The matrix product can also be defined in terms of the dot
product. Representing the ith row of A as the vector a; and the jth column of B as the
vector b;, we have

Cl‘j = a; - b]' (A13)

A square matrix of special importance is the identity or unit matrix

100 --- 0
o010 --- 0

I=(0 01 --- 0 (Al14)

It has the property AI = IA = A.
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Inverse

The inverse of an n x nmatrix A, denoted by A~!, is defined to be an n x n matrix that
has the property

AT'TA=AA"T=1 (Al4)

Determinant

The determinant of a square matrix A is a scalar denoted by |A| or det(A). There is no
concise definition of the determinant for a matrix of arbitrary size. We start with the
determinant of a 2 x 2 matrix, which is defined as

A Ap

Ay Am =A11Axp — ApAn (A15)

The determinant of a 3 x 3 matrix is then defined as

Ay Ap A A A A A A A
2 A 21 Ans 21 Ax
Ax Ap Azl =An A Al A2 + Ass A A
32 Ass 31 Asz 31 Az
Azr Az Ass

Having established the pattern, we can now define the determinant of an n x n
matrix in terms of the determinant of an (n — 1) x (n — 1) matrix:

n
Al =) (D" A Mg (A16)
k=1

where M is the determinant of the (n — 1) x (n — 1) matrix obtained by deleting the
ith row and kth column of A. The term (—1)%*/ Mj;. is called a cofactor of Aj.

Equation (A16) is known as Laplace’s development of the determinant on the
first row of A. Actually Laplace’s development can take place on any convenient row.
Choosing the ith row, we have

n
Al = (D" Ay My (A17)
k=1

The matrix A is said to be singular if |A| = 0.

Positive Definiteness
An n x nmatrix A is said to be positive definite if
x"Ax > 0 (A18)

for all nonvanishing vectors x. It can be shown that a matrix is positive definite if the
determinants of all its leading minors are positive. The leading minors of A are the n
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square matrices

A A oo A
A Ap oo A
, k=1,2,...,n
At Ape - Ak
Therefore, positive definiteness requires that
A Ap A
A Ap
AH > 0, A A > 0, A21 A22 A23 > 0, ey |A| >0 (Alg)
an e Azl Az Ass

Useful Theorems

We list without proof a few theorems that are utilized in the main body of the text.
Most proofs are easy and could be attempted as exercises in matrix algebra.

AB)" = BTAT (Al4a)
(AB)"' = B~ 'A™! (Al4b)
|AT| = |A| (Al4c)
|AB| = |A| |B| (Al14d)
if C = ATBA where B = B”, then C = C” (Al4e)
EXAMPLE A4
Letting
1 2 3 1 8
A=1|1 2 1 u=| 6 v=| 0
01 2 -2 -3

computeu+ v, u- v, Av, and u’Av.

Solution
1+8 9
u+v= 6+0 = 6
-2-3 -5

u-v=1(8)+6(0) + (-2)(-3) =14

a;-v 1(8) +2(0) + 3(-3) -1
Av=|awv |=|[108)+20)+1(-3) | = 5
ag-v 0(8) + 1(0) +2(-3) -6

u’Av=u- (Av) = 1(-1) 4+ 6(5) + (—2)(—6) = 41
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EXAMPLE A5
Compute |A|, where A is given in Example A4. Is A positive definite?

Solution Laplace’s development of the determinant on the first row yields

21
1 2

11
0 2

1 2

Al =1
01

-2 +3

=13)-22)+3(1) =2
Development on the third row is somewhat easier due to the presence of the zero

element:

2 3
21

1 3
11

1 2

IA] = 0
1 2

-1 +2

=0(-4) - 1(-2)+2(0) =2

To verify positive definiteness, we evaluate the determinants of the leading
minors:

A11:l>0 O.K.

A A
Az App

1 2
1 2

=0 NotO.K.

A is not positive definite.

EXAMPLE A6
Evaluate the matrix product AB, where A is given in Example A4 and
—4 1
B=| 1 -4
2 =2
Solution
_al'bl al'bg
AB = ag'bl ag'bg
| as-by  az'b,
[1(-4) +2() +3(2) 1(1) +2(—4) +3(-2) 4 -13
=[1(-9+2D+12) 1M+2(-D+1=2)|=]|0 -9
10(—=4) +1(1) +2(2) 0(1) + 1(—4) +2(=2) 5 -8
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List of Computer Programs (by Chapter)

Chapter 2

2.2 gauss Gauss elimination

2.3 LUdec LU decomposition — decomposition phase

2.3 LUsol Solution phase for above

2.3 choleski Choleski decomposition — decomposition phase
2.3 choleskiSol Solution phase for above

2.4 LUdec3 LU decomposition of tridiagonal matrices

24 LUsol3 Solution phase for above

2.4 LUdec5 LU decomposition of pentadiagonal matrices
24 LUsols Solution phase for above

2.5 swapRows Interchanges rows of a matrix or vector

2.5 gaussPiv Gauss elimination with row pivoting

2.5 LUdecPiv LU decomposition with row pivoting

2.5 LUsolPivl Solution phase for above

2.7 gaussSeidel Gauss-Seidel method with relaxation

2.7 conjGrad Conjugate gradient method

Chapter 3

3.2 newtonPoly  Evaluates Newton’s polynomial

3.2 newtonCoeff Computes coefficients of Newton’s polynomial
3.2 neville Neville’s method of polynomial interpolation
3.2 rational Rational function interpolation

3.3 splineCurv  Computes curvatures of cubic spline at the knots
3.3 splineEval Evaluates cubic spline

3.4 polynFit Computes coefficients of best-fit polynomial
3.4 stdDev Computes standard deviation for above
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List of Computer Programs (by Chapter)

Chapter 4

4.2 rootsearch Searches for and brackets root of an equation
4.3 bisect Method of bisection

44 ridder Ridder’s method

4.5 newtonRaphson  Newton-Raphson method
4.6 newtonRaphson2 Newton-Raphson method for systems of equations

47 evalPoly Evaluates a polynomial and its derivatives

4.7 polyRoots Laguerre’s method for roots of polynomials
Chapter 6

6.2 trapezoid Recursive trapezoidal rule

6.3 romberg Romberg integration

6.4 gaussNodes Nodes and weights for Gauss-Legendre quadrature
6.4 gaussQuad Gauss-Legendre quadrature

6.5 gaussQuad2 Gauss-Legendre quadrature over a quadrilateral

6.5 triangleQuad Gauss-Legendre quadrature over a triangle

Chapter 7

7.2 taylor Taylor series method for solution of initial value problems
7.2 printSol Prints solution of initial value problem in tabular form

7.3 runkKut4  Fourth-order Runge-Kutta method

7.5 runKuts Adaptive (fifth-order) Runge-Kutta method

7.6 midpoint Midpoint method with Richardson extrapolation

7.6 bulStoer Simplified Bulirsch-Stoer method

Chapter 8

8.2 1linInterp Linear interpolation

8.2 shoot2 Shooting method example for second-order differential
equations

8.2 shoot3 Shooting method example for third-order linear differential
equations

8.2 shoot4 Shooting method example for fourth-order differential equations

8.2 shoot4nl  Shooting method example for fourth-order differential equations
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List of Computer Programs (by Chapter)

8.3 fDiff6 Finite difference example for second-order linear differential
equations

8.3 fDiff7 Finite difference example for second-order differential
equations

8.4 fDiff8 Finite difference example for fourth-order linear differential
equations

Chapter 9

9.2 jacobi Jacobi method

9.2 sortEigen Sorts eigenvectors in ascending order of eigenvalues

9.2 stdForm Transforms eigenvalue problem into standard form

9.3 invPower Inverse power method with eigenvalue shifting

9.3 invPower5 As above for pentadiagonal matrices

9.4 householder  Householder reduction to tridiagonal form

9.5 sturmSeq Computes Sturm sequence of tridiagonal matrices

9.5 count_eVals Counts the number of eigenvalues smaller than A

9.5 gerschgorin  Computes global bounds on eigenvalues

9.5 eValBrackets Brackets msmallest eigenvalues of a tri-diagonal matrix

9.5 eigenvals3 Finds m smallest eigenvalues of a tridiagonal matrix

9.5 invPower3 Inverse power method for tridiagonal matrices

Chapter 10

10.2 goldBracket Brackets the minimum of a function

10.2 goldSearch Golden section search for the minimum of a function

10.3 powell Powell’s method of minimization

10.4 downhill Downhill simplex method of minimization



www.MatlabKar.com e b g5l and - e Gi3gel - I8 il ol



www.MatlabKar.com

Index

Adams-Bashforth—-Moulton method, 294
adaptive Runge-Kutta method, 274
anonymous function, 18

array functions, 22

creating arrays, 6, 20

augmented coefficient matrix, 28

bisect, 146
bisection method, for equation root, 145
Brent’s method, 180
Bulirsch-Stoer method, 281

midpoint method, 281

Richardson extrapolation, 282
bulStoer, 285

calling functions, 16

cardinal functions, 101

Cash-Karp coefficients, 275

cell arrays, creating, 7

celldisp, 8

character string, 8

char, 4

choleski, 46

Choleski’s decomposition, 44

choleskiSol, 47

class, 4

coefficient matrices, symmetric/banded,

54

symmetric, 57
symmetric/pentadiagonal, 58
tridiagonal, 55

command window, 24

composite Simpson’s 1/3 rule, 203

composite trapezoidal rule, 200

conditionals, flow control, 11

conjGrad, 87

conjugate gradient method, 85
conjugate directions, 86, 390
Powell’s method, 390

continue statement, 14

count_eVals, 366
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cubic spline, 116, 190
curve fitting. See interpolation/curve fitting
cyclic tridiagonal equation, 90

data types/classes, 4
char array, 4
class command, 4
double array, 4
function_handle, 4
logical array, 4
deflation of polynomials, 173
direct methods, 31
Doolittle’s decomposition, 41
downhill, 400
downbhill simplex, 399

editor/debugger window, 24

eigenvals3, 370

eigenvalue problems. See symmetric matrix
eigenvalue problems

else conditional, 11

elseif conditional, 11

embedded integration formula, 274

eps, 5

equivalent equation, 31

error, 15

euclidan norm, 29

Euler’s method, 254

eValBrackets, 368

evalPoly, 173

evaluating functions, 17

exponential functions, fitting, 131

finite difference approximations, 181
errors in, 185
first central difference approximations, 182
first noncentral, 183
second noncentral, 184
first central difference approximations, 182
first noncentral finite difference
approximations, 183
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Index

flow control, 11
conditionals, 11
loops, 12

for loop, 13

fourth-order Runge-Kutta method, 256

function_handle, 4

functions, 15
anonymous, 18
calling, 16
evaluating, 17
in-line, 19

gauss, 37
Gauss elimination method, 33
multiple sets of equations, 38
Gauss elimination with scaled row pivoting, 66
Gaussian integration, 216
abscissas/weights for Gaussian quadratures,
221
Gauss-Chebyshev quadrature, 223
Gauss-Hermite quadrature, 223
Gauss-Laguerre quadrature, 223
Gauss-Legendre quadrature, 222
Gauss quadrature with logarithmic
singularity, 224
determination of nodal abscissas/weights,
219
orthogonal polynomials, 218
gaussNodes, 225
gaussPiv, 68
gaussQuad, 226
gaussQuad?, 236
gaussSeidel, 84
Gauss-Seidel method, 83
gerschgorin, 367
Gerschgorin’s theorem, 367
goldBracket, 384
goldSearch, 385

Horner’s deflation algorithm, 174
householder, 361
householder reduction to tridiagonal form,
357
accumulated transformation matrix, 360
householder matrix, 358

if, 11
ill-conditioning, in linear algebraic equations
systems, 29
indirect methods, 31
inf, 5
infinity norm, 29
initial value problems
adaptive Runge-Kutta method, 274
Bulirsch-Stoer method, 291
midpoint method, 283
Richardson extrapolation, 282
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MATLAB functions for, 293
Runge-Kutta methods, 254
fourth-order, 256
second-order, 255
stability/stiffness, 270
stability of Euler’s method, 271
stiffness, 271
Taylor series method, 249
in-line functions, 19
input/output, 19
printing, 20
reading, 19
integration order, 234
interpolation/curve fitting
interpolation with cubic spline, 116
least-squares fit, 125
fitting a straight line, 126
fitting linear forms, 127
polynomial fit, 128
weighting of data, 130
fitting exponential functions, 131
weighted linear regression, 130
MATLAB functions for, 141
polynomial interpolation, 100
Lagrange’s method, 100
limitations of, 107
Neville’s method, 105
Newton’s method, 102
interval halving method, 145
invPower, 345
invPower3, 371

jacobi, 332
Jacobian matrix, 235
Jacobi method, 327
Jacobi diagonalization, 329
Jacobi rotation, 328
similarity transformation, 327
transformation to standard form, 334

Laguerre’s method, 174
LAPACK (Linear Algebra PACKage), 27
least-squares fit, 125
fitting a straight line, 126
fitting linear forms, 127
polynomial fit, 128
weighting of data, 130
fitting exponential functions, 131
weighted linear regression, 130
linear algebraic equations systems, 27
Gauss elimination method, 33
algorithm for, 35
back substitution phase, 35
elimination phase, 35
multiple sets of equations, 38
ill-conditioning, 29
iterative methods, 82
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Index

conjugate gradient method, 85
Gauss-Seidel method, 83
linear systems, 30
LU decomposition methods, 40
Choleski’s decomposition, 44
Doolittle’s decomposition, 41
MATLAB functions for, 98
matrix inversion, 80
methods of solution, 30
notation in, 27
overview of direct methods, 31
pivoting, 64
diagonal dominance and, 65

Gauss elimination with scaled row pivoting,

66
when to pivot, 70

symmetric/banded coefficient matrices, 54

symmetric, 57
symmetric/pentadiagonal, 58
tridiagonal, 55
uniqueness of solution for, 28
linear forms, fitting, 127
linear systems, 30
linInterp, 297
logical, 4
logical array, 4
loops, 12
LUdec, 43
LUdec3, 57
LUdec5, 61
LUdecPiv, 69
LUsol, 44
LUso0l3, 57
LUsol5, 61
LUsolPiv, 70

matInv, 80
MATLAB
array manipulation, 20
cells, 7
data types, 4
flow control, 11
functions, 15
input/output, 19
operators, 9
strings, 4
variables, 4
writing/running programs, 24
MATLAB functions
initial value problems, 293
interpolation/curve fitting, 141
linear algebraic equations systems, 98
multistep method, 293
numerical differentiation, 197
numerical integration, 247
optimization, 413
roots of equations, 180
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single-step method, 298
symmetric matrix eigenvalue problems, 379
two-point boundary value problems, 323

matrix algebra, 418
addition, 419
determinant, 420
inverse, 420
multiplication, 419

positive definiteness, 420

transpose, 418

useful theorems, 421

matrix inversion, 80
midpoint, 283

modified Euler’s method, 256
multiple integrals, 233
Gauss-Legendre quadrature over

quadrilateral e

lement, 234

quadrature over triangular element, 240

NaN, 5

Nelder-Mead method, 399

neville, 106
newtonCoeff, 104

Newton—-Cotes formulas, 199
composite trapezoidal rule, 200
recursive trapezoidal rule, 202
Simpson’s rules, 203
trapezoidal rule, 200

newtonPoly, 103
newtonRaphson, 155

newtonRaphson?2, 160
Newton-Raphson method, 154

norm of matrix, 29

numerical differentiation
derivatives by interpolation, 189
cubic spline interpolant, 190
polynomial interpolant, 189
finite difference approximations, 181

errors in, 185

first central difference approximations, 182
first noncentral, 183
second noncentral, 184

MATLAB functions

for, 197

Richardson extrapolation, 186
numerical integration
Gaussian integration, 216
abscissas/weights for Guaussian
quadratures, 221
Gauss—Chebyshev quadrature, 223
Gauss-Hermite quadrature, 223
Gauss-Laguerre quadrature, 223
Gauss-Legendre quadrature, 222
Gauss quadrature with logarithmic
singularity, 224
determination of nodal abscissas/weights,

219

orthogonal polynomials, 218
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numerical integration (Cont.)

MATLAB functions for, 247

multiple integrals, 233
Gauss-Legendre quadrature over

quadrilateral element, 234

quadrature over triangular element, 240

Newton—-Cotes formulas, 199
composite trapezoidal rule, 200
recursive trapezoidal rule, 202
Simpson’s rules, 203
trapezoidal rule, 200

Romberg integration, 208

operators, 9
arithmetic, 9
comparison, 10
logical, 10
optimization
conjugate directions, 389
downbhill simplex method, 399
Powell’s method, 389
MATLAB functions for, 413
minimization along a line, 382
bracketing, 382
golden section search, 383
penalty function, 381
overrelaxation, 83

P-code (pseudo-code), 24
pivot equation, 34
pivoting, 64
diagonal dominance and, 65
Gauss elimination with scaled row
pivoting, 66
when to pivot, 70
plotting, 25
polynFit, 128
polynomials, zeros of, 171
polyRoots, 175
Powell, 392
powell’s method, 389
printSol, 251

quadrature. See numerical integration

rational, 112
rational function interpolation, 111
realmax, 5
realmin, 5
recursive trapezoidal rule, 202
relaxation factor, 83
return command, 15
Richardson extrapolation, 186, 282
ridder, 151
ridder’s method, 149
romberg, 210
Romberg integration, 208
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roots of equations
Brent’s method, 180
incremental search method, 143
MATLAB functions for, 180
method of bisection, 145
Newton-Raphson method, 155
ridder’s method, 149
systems of equations, 159
Newton-Raphson method, 159
zeros of polynomials, 171
deflation of polynomials, 173
evaluation of polynomials, 171
Laguerre’s method, 174
roundoff error, 185
row—-sum norm, 29
Runge-Kutta-Fehlberg formula, 274
Runge—Kutta methods, 254
fourth-order, 256
second-order, 255
runKut4, 257
runKut5s, 276

script files, 24
second noncentral finite difference
approximations, 184
second-order Runge-Kutta method, 255
shooting method, for two-point boundary value
problems, 296
higher-order equations, 301
second-order differential equation, 296
similarity transformation, 327
Simpson’s 1/3 rule, 203
Simpson’s rules, 203
sortEigen, 333
sparse matrix, 98
splineCurv, 118
splineEval, 119
stability/stiffness, 270
stability of Euhler’s method, 271
stiffness, 271
stdDev, 129
stdForm, 335
steepest descent method, 86
stiffness, 271
straight line, fitting, 126
strcat, 8
strings, creating, 8
Strum sequence, 365
sturmSegq, 365
swapRows, 68
switch conditional, 12
symmetric coefficient matrix, 57
symmetric matrix eigenvalue problems
eigenvalues of symmetric tridiagonal
matrices, 364
bracketing eigenvalues, 368
computation of eigenvalues, 370
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computation of eigenvectors, 371
Gerschgorin’s theorem, 367
Strum sequence, 364
householder reduction to tridiagonal form,
357
accumulated transformation matrix, 360
householder matrix, 358
householder reduction of symmetric
matrix, 358
inverse power/power methods, 343
eigenvalue shifting, 344
inverse power method, 343
power method, 345
Jacobi method, 327
Jacobi diagonalization, 329
Jacobi rotation, 328
similarity transformation/diagonalization,
327
transformation to standard form,
334
MATLAB functions for, 379
symmetric/pentadiagonal coefficient matrix, 58
synthetic division, 173

taylor, 250
Taylor series, 249, 415
function of several variables,
159, 416
function of single variable, 415
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transpose operator, 7
trapezoid, 203
trapezoidal rule, 200
triangleQuad, 241
triangular matrix, 31
tridiagonal coefficient matrix, 54
two-point boundary value problems
finite difference method, 310
fourth-order differential equation, 315
second-order differential equation, 296, 311
MATLAB functions for, 323
shooting method, 296
higher-order equations, 301
second-order differential equation, 296

underrelaxation factor, 84

variables, 4
built-in constants/special variable, 5
global, 5

weighted linear regression, 130
while loop, 12
writing/running programs, 24

zeros of polynomials, 171
deflation of polynomials, 173
evaluation of polynomials, 171
Laguerre’s method, 174



	Title
	Copyright
	Contents
	Preface to the First Edition
	Preface to the Second Edition
	1 Introduction to MATLAB
	1.1 Quick Overview
	1.2 Data Types and Variables
	1.3 Operators
	1.4 Flow Control
	1.5 Functions
	1.6 Input/Output
	1.7 Array Manipulation
	1.8 Writing and Running Programs
	1.9 Plotting

	2 Systems of Linear Algebraic Equations
	2.1 Introduction
	2.2 Gauss Elimination Method
	2.3 LU Decomposition Methods
	Problem Set 2.1
	2.4 Symmetric and Banded Coefficient Matrices
	2.5 Pivoting
	Problem Set 2.2
	*2.6 Matrix Inversion
	*2.7 Iterative Methods
	Problem Set 2.3
	MATLAB Functions

	3 Interpolation and Curve Fitting
	3.1 Introduction
	3.2 Polynomial Interpolation
	3.3 Interpolation with Cubic Spline
	Problem Set 3.1
	3.4 Least-Squares Fit
	Problem Set 3.2 
	MATLAB Functions

	4 Roots of Equations
	4.1 Introduction
	4.2 Incremental Search Method
	4.3 Method of Bisection
	4.4 Methods Based on Linear Interpolation
	4.5 Newton-Raphson Method
	4.6 Systems of Equations
	Problem Set 4.1
	*4.7 Zeros of Polynomials
	Problem Set 4.2

	5 Numerical Differentiation
	5.1 Introduction
	5.2 Finite Difference Approximations
	5.3 Richardson Extrapolation
	5.4 Derivatives by Interpolation
	Problem Set 5.1
	MATLAB Functions

	6 Numerical Integration
	6.1 Introduction
	6.2 Newton-Cotes Formulas
	6.3 Romberg Integration
	Problem Set 6.1
	6.4 Gaussian Integration
	Problem Set 6.2
	*6.5 Multiple Integrals
	Problem Set 6.3
	MATLAB Functions

	7 Initial Value Problems
	7.1 Introduction
	7.2 Taylor Series Method
	7.3 Runge-Kutta Methods
	Problem Set 7.1
	7.4 Stability and Stiffness
	7.5 Adaptive Runge-Kutta Method
	7.6 Bulirsch-Stoer Method
	Midpoint Method
	Richardson Extrapolation
	Bulirsch–Stoer Algorithm

	Problem Set 7.2
	MATLAB Functions

	8 Two-Point Boundary Value Problems
	8.1 Introduction
	8.2 Shooting Method
	Second-Order Differential Equation
	Higher-Order Equations

	Problem Set 8.1
	8.3 Finite Difference Method
	Second-Order Differential Equation
	Fourth-Order Differential Equation

	Problem Set 8.2
	MATLAB Functions

	9 Symmetric Matrix Eigenvalue Problems
	9.1 Introduction
	9.2 Jacobi Method
	Jacobi Rotation
	Jacobi Diagonalization

	9.3 Inverse Power and Power Methods
	Inverse Power Method
	Eigenvalue Shifting
	Power Method

	Problem Set 9.1
	9.4 Householder Reduction to Tridiagonal Form
	Householder Matrix
	Householder Reduction of a Symmetric Matrix
	Accumulated Transformation Matrix

	9.5 Eigenvalues of Symmetric Tridiagonal Matrices
	Sturm Sequence
	Gerschgorin’s Theorem
	Bracketing Eigenvalues
	Computation of Eigenvalues
	Computation of Eigenvectors

	Problem Set 9.2
	MATLAB Functions

	10 Introduction to Optimization
	10.1 Introduction
	10.2 Minimization Along a Line
	Bracketing
	Golden Section Search

	10.3 Powell's Method
	Introduction
	Conjugate Directions
	Powell’s Algorithm

	10.4 Downhill Simplex Method
	Problem Set 10.1
	MATLAB Functions

	Appendices
	Index



